> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Homogeneous Ordered Graphs

Gregory Cherlin

Istanbul, May 17

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse

Topological

A Question

Classification

Examples

Homogeneous Ordered Graphs

The Problem in Context

Homogeneity

Abstract

Structural Ramsey Theory and Topological Dynamics

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

- A Question
- Classification Theorems
- Examples

s 3

Homogeneous Ordered Graphs

• Structure of the Proof

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Topological Dynamics A Question Classification Theorems Examples Homogeneoi

Homogeneous Ordered Graphs

Abstract

The Problem in Context

- Homogeneity
- Structural Ramsey Theory and Topological Dynamics

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

- A Question
- Classification Theorems
- Examples

Homogeneous Ordered Graphs Structure of the Proof

Abstract

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Theorem

All homogeneous ordered graphs are known.

Proof

[Cherlin1998, Chap. IV] — as modified in http://www.math.rutgers.edu/~cherlin/Paper/HomOG3.pdf.

・ コット (雪) (小田) (コット 日)

Abstract

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Theorem

All homogeneous ordered graphs are known.

Proof.

[Cherlin1998, Chap. IV] — as modified in http://www.math.rutgers.edu/~cherlin/Paper/HomOG3.pdf.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Gregory Cherlin

Outline

Abstract

The Problem in Context

Homogeneity Structural Rams Theory and Topological Dynamics A Question Classification Theorems

Homogeneous Ordered Graphs

Abstra

2

The Problem in Context

- Homogeneity
- Structural Ramsey Theory and Topological Dynamics

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

- A Question
- Classification Theorems
- Examples

Homogeneous Ordered Graphs Structure of the Proof

Homogeneity

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity

Structural Ram Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Definition (Urysohn, 1924, letter to Hausdorff)

Any isomorphism between finite parts is induced by an automorphism.

... a quite powerful condition of homogeneity: the latter being, that it is possible to map the whole space onto itself (isometrically) so as to carry an arbitrary finite set M into an equally arbitrary set M_1 , congruent to the set M."

Homogeneity

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity

Structural Ram Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Definition (Urysohn, 1924, letter to Hausdorff)

Any isomorphism between finite parts is induced by an automorphism.

... a quite powerful condition of homogeneity: the latter being, that it is possible to map the whole space onto itself (isometrically) so as to carry an arbitrary finite set M into an equally arbitrary set M_1 , congruent to the set M."

Enter Fraïssé

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity

Structural Ram Theory and Topological Dynamics A Question Classification Theorems

Homogeneous Ordered Graphs

Fraïssé:

Homogeneous structures $\Gamma \iff$ Amalgamation Classes \mathcal{A}

 $\mathcal{A} = \operatorname{Sub}(\Gamma)$; Γ is the *Fraïssé Limit* of \mathcal{A}

The amalgamation property

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Enter Fraïssé

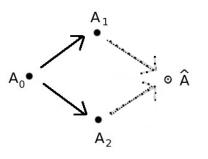
Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context


Homogeneity

Structural Rams Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs Fraïssé:

Homogeneous structures $\Gamma \iff$ Amalgamation Classes \mathcal{A} $\mathcal{A} = \operatorname{Sub}(\Gamma); \Gamma$ is the *Fraïssé Limit* of \mathcal{A}

The amalgamation property

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

Amalgamation and Homogeneity

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity

Structural Ram Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Remark (Fraïssé)

If Γ is a homogeneous structure then the category $\operatorname{Sub}(\Gamma)$ of f.g. substructures has the amalgamation property and joint embedding.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

And conversely: The Fraïssé limit.

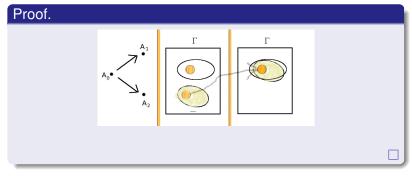
Amalgamation and Homogeneity

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract


The Problem in Context

Homogeneity Structural Ram Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Remark (Fraïssé)

If Γ is a homogeneous structure then the category $\operatorname{Sub}(\Gamma)$ of f.g. substructures has the amalgamation property and joint embedding.

(日)

And conversely: The Fraïssé limit.

Examples

Homogeneous Ordered Graphs

Gregory Cherlin

- Outline
- Abstract
- The Problem in Context
- Homogeneity
- Structural Ram Theory and Topological Dynamics A Question Classification Theorems
- Homogeneous Ordered Graphs

- The rational order \mathbb{Q} .
- The Random Graph Γ_{∞} .
- The generic triangle-free graph Γ₃
- The generically ordered version of any of the above

The generically ordered order is the generic permutation. Permutation: A structure with two orderings.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Examples

Homogeneous Ordered Graphs

Gregory Cherlin

- Outline
- Abstract
- The Problem in Context
- Homogeneity
- Structural Ram Theory and Topological Dynamics A Question
- Classification Theorems
- Homogeneous Ordered Graphs

- The rational order \mathbb{Q} .
- The Random Graph Γ_{∞} .
- The generic triangle-free graph Γ_3
- The generically ordered version of any of the above

The generically ordered order is the generic permutation. Permutation: A structure with two orderings.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Structural Ramsey Theory

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context

Structural Ramsey

Theory and Topological Dynamics

A Question

Classification Theorems Examples

Homogeneous Ordered Graphs

Theorem (Ramsey)

$$N
ightarrow (B)^A_k$$

Given A, B, k find N:

Coloring $\binom{[1,...,N]}{A}$ makes some B-set A-monochromatic

Theorem Template (Structural Ramsey)

 $\mathcal{N}
ightarrow (\mathcal{B})^\mathcal{A}_k$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Given $\mathcal{A}, \mathcal{B}, k$ find \mathcal{N} : Coloring $\binom{\mathcal{N}}{\mathcal{A}}$ makes some \mathcal{B} be \mathcal{A} -monochromatic.

Structural Ramsey Theory

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context

Homogeneit

Structural Ramsey Theory and Topological Dynamics

A Question

Classification Theorems

Homogeneous Ordered Graphs

Structure of the Proof

Theorem (Ramsey)

$$N
ightarrow (B)^A_k$$

Given A, B, k find N:

Coloring $\binom{[1,...,N]}{A}$ makes some B-set A-monochromatic

Theorem Template (Structural Ramsey)

$$\mathcal{N}
ightarrow (\mathcal{B})_k^\mathcal{A}$$

Given $\mathcal{A}, \mathcal{B}, k$ find \mathcal{N} : Coloring $\binom{\mathcal{N}}{\mathcal{A}}$ makes some \mathcal{B} be \mathcal{A} -monochromatic.

Examples

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context

Structural Ramsey

Theory and Topological Dynamics

A Question

Classification Theorems

Homogeneous Ordered Graphs

Finite graphs, finite directed graphs, finite triangle-free graphs NO

Finite orders, finite ordered graphs, finite ordered triangle-free graphs, finite metric spaces YES

Question (Bodirsky)

Does every finitely presented homogeneous structure in a relational language have a finite expansion with the Ramsey property?

Examples

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context

Structural Ramsey

Theory and Topological Dynamics

A Question

Classification Theorems

Homogeneous Ordered Graphs

Structure of the Proof

Finite graphs, finite directed graphs, finite triangle-free graphs NO

Finite orders, finite ordered graphs, finite ordered triangle-free graphs, finite metric spaces YES

Question (Bodirsky)

Does every finitely presented homogeneous structure in a relational language have a finite expansion with the Ramsey property?

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey

Theory and Topological Dynamics

A Question

Theorems Examples

Homogeneous Ordered Graphs

$\mathcal{L}\iff \mathbb{Q}\iff \operatorname{Aut}(\mathbb{Q})$ (with topology)

PESTOV

Ramsey's Theorei for ${\cal L}$ Fixed point property for compact Aut(Q)-flows

 $\mathcal{A} \iff \Gamma \iff \operatorname{Aut}(\Gamma)$ (with topology)

KECHRIS/PESTOV/TODORČEVIČ: Structural Ramsey Theory \leftrightarrow Fixed point property for or \mathcal{A} with order \leftrightarrow compact Aut(Γ)-flows

Example (Pestov; KPT+Nešetril): Aut(U) the Urysohn space

for \mathcal{L}

Homogeneous Ordered Graphs

Structural Ramsey Theory and Topological Dynamics

 $\mathcal{L} \iff \mathbb{Q} \iff \operatorname{Aut}(\mathbb{Q})$ (with topology) PESTOV Fixed point property for Ramsey's Theorem \leftrightarrow compact $Aut(\mathbb{Q})$ -flows

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・ = 900

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context

Structural Ramsey Theory and Topological Dynamics

A Question

Classification Theorems Examples

Homogeneous Ordered Graphs $\begin{array}{ccc} \mathcal{L} \iff \mathbb{Q} \iff \operatorname{Aut}(\mathbb{Q}) \text{ (with topology)} \\ & \mathsf{PESTOV} \\ \mathsf{Ramsey's Theorem} \\ & \Leftrightarrow & \mathsf{Fixed point property for} \\ & \mathsf{compact Aut}(\mathbb{Q}) \text{-flows} \end{array}$

$\mathcal{A} \iff \Gamma \iff \operatorname{Aut}(\Gamma)$ (with topology)

Kechris/Pestov/Todorčevič:

Structural Ramsey Theory \leftrightarrow Fixed point property for \mathcal{A} with order \leftrightarrow compact $\operatorname{Aut}(\Gamma)$ -flows

Example (Pestov; KPT+Nešetril): Aut(U) the Urysohn space

for \mathcal{L}

Homogeneous Ordered Graphs

Structural Ramsey

Theory and Topological Dynamics

 $\mathcal{L} \iff \mathbb{Q} \iff \operatorname{Aut}(\mathbb{Q})$ (with topology) PESTOV Fixed point property for Ramsey's Theorem \leftrightarrow compact Aut(O)-flows

 $\mathcal{A} \iff \Gamma \iff \operatorname{Aut}(\Gamma)$ (with topology)

KECHBIS/PESTOV/TODOBČEVIČ:

Fixed point property for Structural Ramsey Theory compact $Aut(\Gamma)$ -flows for A with order

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

for \mathcal{L}

Homogeneous Ordered Graphs

Structural Ramsey Theory and

Topological Dynamics

 $\mathcal{L} \iff \mathbb{Q} \iff \operatorname{Aut}(\mathbb{Q})$ (with topology) PESTOV Fixed point property for Ramsey's Theorem \leftrightarrow compact Aut(O)-flows

 $\mathcal{A} \iff \Gamma \iff \operatorname{Aut}(\Gamma)$ (with topology)

KECHBIS/PESTOV/TODOBČEVIČ:

Fixed point property for Structural Ramsey Theory compact $Aut(\Gamma)$ -flows for A with order

Example (Pestov; KPT+Nešetril): Aut(\mathbb{U}) the Urysohn space

Linear Orders

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context

Homogeneity

Structural Ramsey Theory and Topological Dynamics

A Question

Classification Theorems Examples

Homogeneous Ordered Graphs

Structure of the Proof

Remark

If $Aut(\Gamma)$ is has fixed points on compact flows then Γ has a definable linear order.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Because $\operatorname{Aut}(\Gamma)$ acts on $\mathcal{L}(\Gamma)\subseteq 2^{\Gamma imes\Gamma}$

Linear Orders

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context

Homogeneity Structural Ramsey

Theory and Topological Dynamics

A Question

Classification Theorems Examples

Homogeneous Ordered Graphs

Structure of the Proof

Remark

If $Aut(\Gamma)$ is has fixed points on compact flows then Γ has a definable linear order.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Because $\operatorname{Aut}(\Gamma)$ acts on $\mathcal{L}(\Gamma) \subseteq 2^{\Gamma \times \Gamma}$

From Homogeneity to Ramsey Theory?

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity

Theory and Topological Dynamics

A Question

Classification Theorems Examples

Homogeneous Ordered Graphs

Returning to

Question (Bodirsky)

Given a homogeneous structure in a finite relational language, is there a homogeneous expansion with the same properties, and with a structural Ramsey theorem?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

What are some good test cases?

Homogeneous Ordered Graphs

Gregory Cherlin

- Outline
- Abstract
- The Problem in Context Homogeneity Structural Bamser
- Theory and Topological Dynamics
- A Question
- Classification Theorems Examples
- Homogeneous Ordered Graphs

• Take ordered structures seriously.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• Take metric spaces seriously.

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity

Theory and Topological Dynamics

A Question

Classification Theorems Examples

Homogeneous Ordered Graphs • Take ordered structures seriously.

 Classify the homogeneous ordered graphs (Nguyen Van Thé, 2012; avoided by Macpherson [2010] and Cherlin [2011])

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Take metric spaces seriously.

Gregory Cherlin

Outline

Abstract

The Problem in Context

Structural Rams Theory and Topological Dynamics

A Question

Classification Theorems Examples

Homogeneous Ordered Graphs

• Take ordered structures seriously.

- Classify the homogeneous ordered graphs (Nguyen Van Thé, 2012; avoided by Macpherson [2010] and Cherlin [2011])
- Take metric spaces seriously.
 - Classify the metrically homogeneous graphs (Cameron, 1998, cf. Moss 1992)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse

Topological Dynamics

A Question

Classification Theorems Examples

Homogeneous Ordered Graphs

Structure of the Proof

• Take ordered structures seriously.

- Classify the homogeneous ordered graphs (Nguyen Van Thé, 2012; avoided by Macpherson [2010] and Cherlin [2011])
- Take metric spaces seriously.
 - Classify the metrically homogeneous graphs (Cameron, 1998, cf. Moss 1992)

Remark on metrically homogeneous graphs

[Cherlin1998, Appendix]: 27 homogeneous structures with 4 nontrivial symmetric 2-types, not accounted for by general principles.

- 18 can be interpreted as metrically homogeneous,
 - 3 are generic liftings of a metrically homogeneous graph of diameter 3 by generically splitting a type
 - 6 remain unexplained.

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context

Homogeneity Structural Rams Theory and Topological Dynamics

A Question

Classification Theorems Examples

Homogeneous Ordered Graphs

• Take ordered structures seriously.

- Classify the homogeneous ordered graphs (Nguyen Van Thé, 2012; avoided by Macpherson [2010] and Cherlin [2011])
- Take metric spaces seriously.
 - Classify the metrically homogeneous graphs (Cameron, 1998, cf. Moss 1992)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The present talk deals only with the first problem.

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse Theory and Topological Dynamics A Question

Classification Theorems

Examples

Homogeneous Ordered Graphs All the homogeneous structures of the following types (and others) have been classified.

• Partial Orders SCHMERL [1979]

• Graphs LACHLAN/WOODROW [1980]

- Tournaments LACHLAN [1984]
- Directed Graphs CHERLIN [1998]
- Homogeneous Permutations CAMERON [2003]
- *Vertex colored partial orders* (Torrezao de Sousa/Truss) [2008]

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

-

• Metrically homogeneous graphs with triangle constraints (Cherlin) [20??]

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse Theory and Topological Dynamics A Question

Classification Theorems

Examples

Homogeneous Ordered Graphs All the homogeneous structures of the following types (and others) have been classified.

- Partial Orders SCHMERL [1979]
- Graphs LACHLAN/WOODROW [1980]
- Tournaments LACHLAN [1984]
- Directed Graphs CHERLIN [1998]
- Homogeneous Permutations CAMERON [2003]
- Vertex colored partial orders (Torrezao de Sousa/Truss) [2008]
- Metrically homogeneous graphs with triangle constraints (Cherlin) [20??]

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse Theory and Topological Dynamics A Question

Theorems Examples

Homogeneous Ordered Graphs All the homogeneous structures of the following types (and others) have been classified.

- Partial Orders SCHMERL [1979]
- Graphs LACHLAN/WOODROW [1980]
- Tournaments LACHLAN [1984]
- Directed Graphs CHERLIN [1998]
- Homogeneous Permutations CAMERON [2003]
- Vertex colored partial orders (Torrezao de Sousa/Truss) [2008]
- Metrically homogeneous graphs with triangle constraints (Cherlin) [20??]

Most examples are natural, e.g. the Henson graphs (generic K_n -free).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse Theory and Topological Dynamics

A Question

Classification Theorems

Examples

Homogeneous Ordered Graphs All the homogeneous structures of the following types (and others) have been classified.

- Partial Orders SCHMERL [1979]
- Graphs LACHLAN/WOODROW [1980]
- Tournaments LACHLAN [1984]
- Directed Graphs CHERLIN [1998]
- Homogeneous Permutations CAMERON [2003]
- *Vertex colored partial orders* (Torrezao de Sousa/Truss) [2008]
- Metrically homogeneous graphs with triangle constraints (Cherlin) [20??]

Most examples are natural, e.g. the Henson graphs (generic K_n -free).

But not all

The Generic Local Order

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse Theory and Topological Dynamics A Question Classification Theorems

Examples

Homogeneous Ordered Graphs Structure of the Proof

Classification \implies exotic examples . Lachlan's generic local order.

Definition

A *local order* is a tournament such that the in-neighbors and the out-neighbors of any vertex form a linear order.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

'heorem (Lachlan)

The infinite homogenous tournaments are

a) The rational order

(b) The generic local order

c) The generic tournament

The Generic Local Order

Homogeneous Ordered Graphs

Examples

Classification \implies exotic examples. Lachlan's generic local order.

Definition

A local order is a tournament such that the in-neighbors and the out-neighbors of any vertex form a linear order.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

The Generic Local Order

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramser Theory and Topological Dynamics A Question Classification

Theorems

Homogeneous Ordered Graphs

Structure of the Proof

Classification \implies exotic examples . Lachlan's generic local order.

Definition

A *local order* is a tournament such that the in-neighbors and the out-neighbors of any vertex form a linear order.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (Lachlan)

The infinite homogenous tournaments are

- (a) The rational order
- (b) The generic local order

(c) The generic tournament

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse Theory and Topological Dynamics A Question

Classification

Examples

Homogeneous Ordered Graphs • We need subtle examples to test broad conjectures. Especially, ordered structures.

Classification theorems may catch exotic examples.
 There are good classification methods

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse Theory and Topological Dynamics

A Question

Classification Theorems

Examples

Homogeneous Ordered Graphs

- We need subtle examples to test broad conjectures. Especially, ordered structures.
- Classification theorems may catch exotic examples.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

There are good classification methods.

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse Theory and Topological Dynamics

Classificatio

Theorems

Examples

Homogeneous Ordered Graphs

- We need subtle examples to test broad conjectures. Especially, ordered structures.
- Classification theorems may catch exotic examples.

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• There are good classification methods.

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Topological Dynamics A Question Classification Theorems

Examples

Homogeneous Ordered Graphs

- We need subtle examples to test broad conjectures. Especially, ordered structures.
- Classification theorems may catch exotic examples.
- There are good classification methods.

Nguyen Van Thé's question: Tthe classification of homogeneous graphs case is known, can we add ordering? And do we get exotic examples?

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse Theory and Topological Dynamics A Question

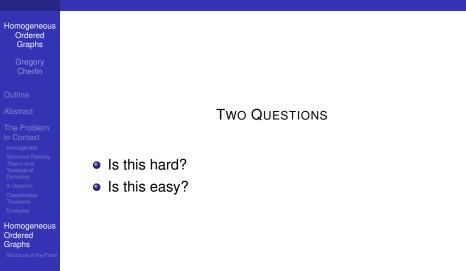
Classification Theorems

Examples

Homogeneous Ordered Graphs

Structure of the Proof

1 A


The Problem in Context

- Homogeneity
- Structural Ramsey Theory and Topological Dynamics
- A Question
- Classification Theorems
- Examples

Homogeneous Ordered Graphs Structure of the Proof

・

Can we add ordering?—First Impressions

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Dynamics A Question Classification Theoreme

Examples

Homogeneous Ordered Graphs

Structure of the Proof

Question

Shouldn't we start with homogeneous ordered tournaments?

- There are three infinite homogenous tournaments
- There are infinitely many homogenous graphs.
- Almost all can be *generically ordered* to give ordered versions

Conjecture

The class of homogeneous ordered tournaments is simpler than the class of homogeneous ordered graphs.

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

ъ

FALSE

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramser Theory and Topological Dynamics A Question Classification

Classification Theorems Examples

Homogeneous Ordered Graphs

Structure of the Proof

Question

Shouldn't we start with homogeneous ordered tournaments?

- There are three infinite homogenous tournaments
- There are infinitely many homogenous graphs.
- Almost all can be *generically ordered* to give ordered versions

Conjecture

The class of homogeneous ordered tournaments is simpler than the class of homogeneous ordered graphs.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

FALSE

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Topological Dynamics A Question

Classification Theorems

Examples

Homogeneous Ordered Graphs

Structure of the Proof

Question

Shouldn't we start with homogeneous ordered tournaments?

- There are three infinite homogenous tournaments
- There are infinitely many homogenous graphs.
- Almost all can be *generically ordered* to give ordered versions

Conjecture

The class of homogeneous ordered tournaments is simpler than the class of homogeneous ordered graphs.

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Topological Dynamics A Question

Classification Theorems

Examples

Homogeneous Ordered Graphs

Structure of the Proof

Question

Shouldn't we start with homogeneous ordered tournaments?

- There are three infinite homogenous tournaments
- There are infinitely many homogenous graphs.
- Almost all can be *generically ordered* to give ordered versions

Conjecture

The class of homogeneous ordered tournaments is simpler than the class of homogeneous ordered graphs.

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Structure of the Proof

Conjecture (False)

The class of homogeneous ordered tournaments is simpler than the class of homogeneous ordered graphs.

emark

The classes of homogeneous ordered tournaments and homogeneous ordered graphs are the same.

・ロット (雪) (日) (日) (日)

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Structure of the Proof

Conjecture (False)

The class of homogeneous ordered tournaments is simpler than the class of homogeneous ordered graphs.

Remark

The classes of homogeneous ordered tournaments and homogeneous ordered graphs are the same.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramser Theory and Topological Dynamics A Question Classification

Examples

Homogeneous Ordered Graphs

Structure of the Proof

Conjecture (False)

The class of homogeneous ordered tournaments is simpler than the class of homogeneous ordered graphs.

Remark

Proof.

The classes of homogeneous ordered tournaments and homogeneous ordered graphs are the same.

 $R \leftrightarrow S \bigtriangleup <$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse Theory and Topological Dynamics A Question Classification Theorems

Examples

Homogeneous Ordered Graphs

Structure of the Proof

Conjecture (False)

The class of homogeneous ordered tournaments is simpler than the class of homogeneous ordered graphs.

Remark

The classes of homogeneous ordered tournaments and homogeneous ordered graphs are the same.

Disconcerting!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

So is this Hard?

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Structure of the Proof

Simplest guess:

- The homogeneous ordered tournaments are, mainly, the generically ordered homogeneous tournaments;
- The homogeneous ordered graphs are, mainly, the generically ordered homogeneous graphs.

Hopelessly false ...

There are homogeneous ordered graphs which are not ordered homogeneous graphs!

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

What should the classification theorem say?

So is this Hard?

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Topological Dynamics A Question Classification Theorems

Homogeneous Ordered Graphs

Structure of the Proof

Simplest guess:

- The homogeneous ordered tournaments are, mainly, the generically ordered homogeneous tournaments;
- The homogeneous ordered graphs are, mainly, the generically ordered homogeneous graphs.

Hopelessly false ...

There are homogeneous ordered graphs which are not ordered homogeneous graphs!

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

What should the classification theorem say?

Why is this Easy?

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Structure of the Proof

Add order to previous proofs?

There are two proofs of the classification of the homogeneous graphs.

Lachlan/Woodrow 1980 Introduced subtle inductive methods relating to amalgamation classes. Cherlin 1998, Chap. 4 A proof based on Lachlan's later classification of homogeneous tournaments.

The second proof unifies tournaments and graphs. Conclusion: Try the method of [Cherlin 1988] with an ordering added.

Why is this Easy?

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Structure of the Proof

Add order to previous proofs?

There are two proofs of the classification of the homogeneous graphs.

Lachlan/Woodrow 1980 Introduced subtle inductive methods relating to amalgamation classes.

Cherlin 1998, Chap. 4 A proof based on Lachlan's later classification of homogeneous tournaments.

The second proof unifies tournaments and graphs. Conclusion: Try the method of [Cherlin 1988] with an ordering added.

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Structure of the Proof

"The proof given here is more complex than the one given [by Lachlan/Woodrow], but it generalizes"

I now wish that sentence had ended with the words "to the ordered case."

Objection

How can adding order to the analysis of homogeneous ordered graphs produce a classification including ordered tournaments?

It can't.

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstrac

The Problem in Context Homogeneity Structural Ramse Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Structure of the Proof

"The proof given here is more complex than the one given [by Lachlan/Woodrow], but it generalizes"

I now wish that sentence had ended with the words "to the ordered case."

Objection

How can adding order to the analysis of homogeneous ordered graphs produce a classification including ordered tournaments?

It can't.

- 1

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Structure of the Proof

"The proof given here is more complex than the one given [by Lachlan/Woodrow], but it generalizes"

I now wish that sentence had ended with the words "to the ordered case."

Objection

How can adding order to the analysis of homogeneous ordered graphs produce a classification including ordered tournaments?

It can't.

1

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Structure of the Proof

"The proof given here is more complex than the one given [by Lachlan/Woodrow], but it generalizes ..."

I now wish that sentence had ended with the words "to the ordered case."

Objection

How can adding order to the analysis of homogeneous ordered graphs produce a classification including ordered tournaments?

It can't.

- :
- •

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Objection Overruled

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse Theory and Topological

A Question

Classification Theorems

Homogeneous Ordered Graphs

Structure of the Proof

Proposition

A homogeneous ordered graph is

- A generically ordered homogeneous graph; or
- A generically ordered homogeneous tournament; or
- Something simpler (linear extension of partial order, equivalence relation with convex classes)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Strategy

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse Theory and Topological Dynamics A Question Classification Theorems

Examples

Homogeneous Ordered Graphs

Structure of the Proof

Treat the generically ordered homogeneous tournaments as sporadic.

- Cameron treated linear expansions of Q (homogeneous permutations).
- The generically ordered random tournament is the generically ordered random graph!
- This leaves only the generically ordered local order S to be captured by other methods.

This works

Strategy

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramso Theory and Topological Dynamics A Question Classification Theorems

Homogeneous Ordered Graphs

Structure of the Proof

Treat the generically ordered homogeneous tournaments as sporadic.

- Cameron treated linear expansions of Q (homogeneous permutations).
- The generically ordered random tournament is the generically ordered random graph!
- This leaves only the generically ordered local order S to be captured by other methods.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

his works

Strategy

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramse Theory and Topological Dynamics A Question Classification Theorems

Homogeneous Ordered Graphs

Structure of the Proof

Treat the generically ordered homogeneous tournaments as sporadic.

- Cameron treated linear expansions of Q (homogeneous permutations).
- The generically ordered random tournament is the generically ordered random graph!
- This leaves only the generically ordered local order S to be captured by other methods.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

This works

Graphs vs. Tournaments

Homogeneous Ordered Graphs

Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs

Structure of the Proof

Corollary

The classification of homogeneous tournaments with trivial acl follows from the classification of homogeneous ordered graphs.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proof.

Generically order the tournament and view it as a homogenous ordered graph.

The three cases

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Topological Dynamics A Ouestion Classification Theorems Examples Homogeneou

Ordered Graphs Structure of the Proof Suppose that the graph contains an infinite independent set.

Special Omits some ordered form of the 3-cycle C_3 . *Target:* Homogeneous permutations, Linear extensions of partial orders Sporadic Realizes both ordered forms of C_3 (\vec{P}_3 , \vec{P}_3^c) and \vec{l}_{∞} , but omits $\vec{l}_1 \perp \vec{P}_3$. *Target:* Generically ordered S. Generic Realizes $\vec{l}_1 \perp \vec{P}_3$, \vec{P}_3^c , \vec{l}_{∞} . *Target:* Generically ordered Henson graph

http://www.math.rutgers.edu/~cherlin/Paper/HomOG3.pdf.

Conclusion

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs Structure of the Proof

Theorem

All homogeneous ordered graphs were known before the classification was undertaken

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Essentially, since 1984.

Shall we continue the hunt?

Conclusion

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs Structure of the Proof Theorem

All homogeneous ordered graphs were known before the classification was undertaken

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Essentially, since 1984.

Shall we continue the hunt?

Generalizations and related questions

Homogeneous Ordered Graphs

> Gregory Cherlin

Outline

Abstract

The Problem in Context Homogeneity Structural Ramsey Theory and Topological Dynamics A Question Classification Theorems Examples

Homogeneous Ordered Graphs Structure of the Proof

Question

Classify the homogeneous structures (Γ, S, R) where (Γ, R) is a graph and (Γ, S) is a local order.

Note: The generic local order has a particularly subtle expansion to a Ramsey class.

Question

Classify the homogeneous partially ordered graphs.

Question (Cameron)

Classify the homogeneous metrically homogeneous graphs.

Question

Work out the structural Ramsey theory for suitably ordered