The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(n) or k-sets

Binary Primitive Affine Groups

The Relational Complexity of a Permutation Group

Gregory Cherlin

May 23, 2013 — Antalya Algebra Days, Şirince

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) or *k*-sets

Binary Primitive Affine Groups

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Permutation Groups are Automorphism Groups

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups $(G, \Omega) \leftrightarrow \operatorname{Aut}(\Omega)$

Same group iff *interdefinable*

Permutation Groups are Automorphism Groups

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) or *k*-sets

Binary Primitive Affine Groups $(G, \Omega) \leftrightarrow \operatorname{Aut}(\Omega)$

Examples

Imprimitive k-closed ρ_G right regular k-homogeneous

Same group iff *interdefinable*

Equivalence Relation *k*-ary Left *G*-action *k*-homogeneous

Permutation Groups are Automorphism Groups

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) or *k*-sets

Binary Primitive Affine Groups $(G, \Omega) \leftrightarrow \operatorname{Aut}(\Omega)$

Examples

Imprimitive E k-closed ρ_G right regular k-homogeneous

Same group iff *interdefinable*

Equivalence Relation *k*-ary Left *G*-action *k*-homogeneous

Right side: *k*-ary + orbits determined by isomorphism types Left side: Orbits determined by *k*-orbits

The Petersen Graph

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

 $Aut(\Gamma) = Sym(5)$ acting on 2-sets. Graph structure: disjoint pairs

The Petersen Graph

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

 $Aut(\Gamma) = Sym(5)$ acting on 2-sets. Graph structure: disjoint pairs 2-closed Not 2-homogeneous 3-homogeneous.

The Petersen Graph

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

 $\operatorname{Aut}(\Gamma) = \operatorname{Sym}(5)$ acting on 2-sets. Graph structure: disjoint pairs 2-closed Not 2-homogeneous 3-homogeneous. Independent triples: Type (1) common neighbor; Type (2) no common neighbor I.e. (1) no point in common; (2) unique point in common.

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) or *k*-sets

Binary Primitive Affine Groups

- (Sym(*n*), *Nat*)
- (*O*₂⁻(*q*), *Nat*)
- 1-skeleton of the icosahedron
- Sym(6) on 3-sets

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

- (Sym(*n*), *Nat*)
- (*O*₂⁻(*q*), *Nat*)
- 1-skeleton of the icosahedron
- Sym(6) on 3-sets

Remark (Fourier)

The natural action of an anisotropic orthogonal group is binary.

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

- (Sym(*n*), *Nat*)
- (*O*₂⁻(*q*), *Nat*)
- 1-skeleton of the icosahedron
- Sym(6) on 3-sets

Remark (Fourier)

The natural action of an anisotropic orthogonal group is binary.

Proof.

All isometries are linear

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k-*sets

Binary Primitive Affine Groups

- (Sym(*n*), *Nat*)
- (*O*₂⁻(*q*), *Nat*)
- 1-skeleton of the icosahedron
- Sym(6) on 3-sets

Remark (Fourier)

The natural action of an anisotropic orthogonal group is binary.

The last two examples—the icosahedron and Sym(6) on 3-sets—are *metrically homogeneous graphs* (Cameron 1980). The edge relation on 3-sets is: $|u \cap v| = 2$.

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

- (Sym(*n*), *Nat*)
- (*O*₂⁻(*q*), *Nat*)
- 1-skeleton of the icosahedron
- Sym(6) on 3-sets

Remark (Fourier)

The natural action of an anisotropic orthogonal group is binary.

Conjecture

A primitive binary homogeneous group is Sym(n) or AO(V)(V anisotropic) acting naturally, or the regular action of C_p .

Relational Complexity

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k-*sets

Binary Primitive Affine Groups

Remark

Every permutation group on n points is (n-1)-homogeneous.

Relational Complexity

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Group

Remark

Every permutation group on n points is (n-1)-homogeneous.

 $\rho(G, \Omega) = \min \text{ degree of homogeneity}$

Examples

(GL_n, Nat): n + 1 (or n, over \mathbb{F}_2); (Sym n, k-sets): $\lfloor \ln_2 k \rfloor + 2$; (Aut n, k-sets): n - 3 typically, with exceptions for $k \le 2$ or n = 2k + 2;

Wreath products

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

$(\operatorname{Sym}(n) \wr \operatorname{Sym}(d), n^d)$

Wreath products

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) or *k*-sets

Binary Primitive Affine Groups $(\operatorname{Sym}(n) \wr \operatorname{Sym}(d), n^d)$

Proposition (Saracino)

For
$$n \ge 2[\log_2 d]+2$$
,
 $\rho(n^d) = 2[\log_2 d]+2$
For $n \le 2\lfloor \log_2 d \rfloor+2$,
 $\rho(n^d) = 2\lfloor \log_4 \alpha_n 2^{n/2+1} d \rfloor + \epsilon$
with $\epsilon = 0$ or 1 unless $n = d = 3$,
and $\alpha_n = \begin{cases} 1 & n \text{ even} \\ (4/3\sqrt{2}) & n \text{ odd.} \end{cases}$

Two Propositions

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Proposition

The relational complexity of Aut(n) on k-sets ($2k \le n$) is n-3 with the following exceptions.

<i>n</i> – 1	<i>k</i> = 1 :
max(n - 2, 3)	<i>k</i> = 2 :
n – 2	$k \ge 3, n = 2k + 2$:

Proposition

Let (G, Ω) be binary, primitive, and affine. Then G is the natural action of AO(V) with V anisotropic, or the regular action of C_p .

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(n) on k-sets

Binary Primitive Affine Groups

Relational Complexity

2 Aut(*n*) on *k*-sets

3

Binary Primitive Affine Groups

A critical *p*-orbit

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(n) on k-sets

Binary Primitive Affine Groups

 $(X_1,\ldots,X_{\rho})\sim_{\rho-1}(Y_1,\ldots,Y_{\rho})$ $(X_1,\ldots,X_{\rho}) \not\sim (Y_1,\ldots,Y_{\rho})$

A critical *p*-orbit

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(n) on k-sets

Binary Primitive Affine Groups

$$(X_1,\ldots,X_{
ho})\sim_{
ho-1}(Y_1,\ldots,Y_{
ho})\ (X_1,\ldots,X_{
ho})
eq(Y_1,\ldots,Y_{
ho})$$

Let us suppose $\rho > \rho(\text{Sym}(n), k\text{-sets}) = \lfloor \ln_2 k \rfloor + 2$.

A critical *p*-orbit

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

$$(X_1,\ldots,X_\rho)\sim_{\rho-1} (Y_1,\ldots,Y_\rho)$$
$$(X_1,\ldots,X_\rho) \not\sim (Y_1,\ldots,Y_\rho)$$

Let us suppose $\rho > \rho(\text{Sym}(n), k\text{-sets}) = \lfloor \ln_2 k \rfloor + 2$. Then $\mathcal{X}^{\xi} = \mathcal{Y}$ for some $\xi \in \text{Sym}(n)$, necessarily odd. In particular:

X separates points; *Xⁱ* = (*X*₁,..., *X̃_i*,..., *X*_ρ) does not separate points.
Show

$$ho \leq$$
 n – 3 with specific exceptions

The non-separation graph

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups • X separates points;

•
$$\mathcal{X}^i = (X_1, \dots, \widehat{X}_i, \dots, X_{
ho})$$
 does not separate points.

The non-separation graph

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups • X separates points;

• $\mathcal{X}^i = (X_1, \dots, \widehat{X}_i, \dots, X_{\rho})$ does not separate points.

 (u_i, v_i) not separated by X_j $(j \neq i)$ ρ distinct edges: Graph Γ .

The non-separation graph

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

• X separates points;

• $\mathcal{X}^i = (X_1, \dots, \widehat{X}_i, \dots, X_{\rho})$ does not separate points.

 (u_i, v_i) not separated by X_j $(j \neq i)$ ρ distinct edges: Graph Γ .

Lemma

Γ is acyclic.

Proof.

 X_i separates $e_i = (u_i, v_i)$.

 X_i does not separate pairs in the same connected component of $\Gamma \setminus e_i$.

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(n) on k-sets

Binary Primitive Affine Groups If Γ has γ components and ρ edges, then $\rho = n - \gamma$. So we claim: usually $\gamma \ge 3$.

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups If Γ has γ components and ρ edges, then $\rho = n - \gamma$. So we claim: usually $\gamma \geq 3$.

Lemma

If there are two components, and $k \ge 3$, then both components have order at most k + 1.

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(n) on k-sets

Binary Primitive Affine Groups If Γ has γ components and ρ edges, then $\rho = n - \gamma$. So we claim: usually $\gamma \ge 3$.

Lemma

If there are two components, and $k \ge 3$, then both components have order at most k + 1.

oof.				
	Component	\mathcal{C}_1	\mathcal{C}_{2}	
	Order	> <i>k</i> + 1	the rest	
	Vertex	leaf u	leaf v	
	Edge	edge (u, u')	edge (v, v')	
	Separator	X	Χ'	

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups If Γ has γ components and ρ edges, then $\rho = n - \gamma$. So we claim: usually $\gamma \ge 3$.

Lemma

If there are two components, and $k \ge 3$, then both components have order at most k + 1.

Proof.				
	Component	\mathcal{C}_1	\mathcal{C}_{2}	
	Order	> <i>k</i> + 1	<i>k</i> – 1	
	Vertex	leaf u	leaf v	
	Edge	edge (u, u')	edge (v, v')	
	Separator	X	Χ′	

X cannot contain $C_1 \setminus \{u\}$; so X is $\{u\} \cup C_2$. Hence $|C_2| = k - 1 > 1$

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups If Γ has γ components and ρ edges, then $\rho = n - \gamma$. So we claim: usually $\gamma \geq 3$.

Lemma

If there are two components, and $k \ge 3$, then both components have order at most k + 1.

Proof.				
	Component	\mathcal{C}_1	\mathcal{C}_{2}	
	Order	> <i>k</i> + 1	<i>k</i> – 1	
	Vertex	leaf u	leaf v	
	Edge	edge (u, u')	edge (v, v')	
	Separator	X	Χ'	

 $|C_2| > 1$... Hence the edge (v, v') exists and X' must meet C_2 and C_1 .

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(n) on k-sets

Binary Primitive Affine Groups If Γ has γ components and ρ edges, then $\rho = n - \gamma$. So we claim: usually $\gamma \ge 3$.

Lemma

If there are two components, and $k \ge 3$, then both components have order at most k + 1.

roof.				
	Component	\mathcal{C}_1	\mathcal{C}_{2}	
	Order	> <i>k</i> + 1	<i>k</i> – 1	
	Vertex	leaf u	leaf v	
	Edge	edge (u, u')	edge (v, v')	
	Separator	X	Χ'	

X' must meet C_2 and C_1 But then X' contains C_1 , a contradiction.

Exceptional cases, $\rho = n - 2$

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups The previous lemma points toward the case

n = 2k + 2

with the non-separation graph Γ consisting of two trees of order k + 1.

Lemma

If Γ has two components, each of order k + 1, then the trees are stars and the separators X_i are

 $\mathcal{C}_{\ell} \setminus \{u\}$

with u varying over leaves.

Exceptional cases, $\rho = n - 2$

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

Proof.

If Γ has two components, each of order k + 1, then the trees are stars and the separators X_i are

 $\mathcal{C}_{\ell} \setminus \{u\}$

with u varying over leaves.

If X separates the edge (u, v) in the component C, then X is a k-subset of C. Hence u or v is a leaf. ... Everything follows.

Exceptional cases, $\rho = n - 2$

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

If Γ has two components, each of order k + 1, then the trees are stars and the separators X_i are

 $\mathcal{C}_{\ell} \setminus \{u\}$

with u varying over leaves.

If X separates the edge (u, v) in the component C, then X is a k-subset of C. Hence u or v is a leaf. ... Everything follows.

Corollary

Proof.

In the exceptional case with n = 2k + 2, we have $\rho \ge n - 2$.

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) or *k*-sets

Binary Primitive Affine Groups

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

	Affine Induction
The Relational Complexity of a Permutation Group	
Gregory Cherlin	Affine groups: AG acting on A:
	A acts by translation— G by automorphisms.
Binary Primitive Affine Groups	

	Affine Induction
The Relational Complexity of a Permutation Group Cherlin Relational Complexity Aut(n) on <i>k</i> -sets Binary Primitive Affine Groups	Affine groups: <i>AG</i> acting on <i>A</i> : <i>A</i> acts by translation— <i>G</i> by automorphisms. Induction

Affine Induction The Relational Complexity of a Permutation Group Affine groups: AG acting on A: A acts by translation—G by automorphisms. Induction Binary Primitive Affine Groups Every transitive action is a quotient of a binary action.

Affine Induction The Relational Complexity of a Permutation Group Affine groups: AG acting on A: A acts by translation—G by automorphisms. Induction Binary Primitive Affine Groups Every transitive action is a quotient of a binary action. But we have some useful subquotients

Affine Induction

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

Let AG be affine and binary, $H \triangleleft G$, and $V \leq A$ H-irreducible. Then $VN_G(V)$ is binary.

Affine Induction

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

Let AG be affine and binary, $H \triangleleft G$, and $V \leq A$ *H*-irreducible. Then $VN_G(V)$ is binary.

Proof.

If $\bar{v} \sim_2 \bar{w}$ then we may suppose $v_1 = w_1 = 0$ and some $v_i \neq 0$. Then

$$ar{v} \sim_{AG} ar{w} \implies ar{v} \sim_G ar{w} \implies ar{v} \sim_G ar{w} \implies ar{v} \sim_{N_G(V)} ar{w}$$

since

 $V \cap V^g = V$ or (0)

Generation

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(n) on k-sets

Binary Primitive Affine Groups

Lemma

Let AG be binary and affine. Then G is generated by involutions.

Generation

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

Let AG be binary and affine. Then G is generated by involutions.

Lemma

$$\ldots g \in G$$
, $a \in A$. Then $\exists t \in I(G)$

$$x^g = x^t$$
 for $x \in C_A(g^2) \cup \{a\}$

Generation, cont.

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

 $x^g = x^t$ for $x \in C_A(g^2) \cup \{a\}$

Generation, cont.

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

$$x^g = x^t$$
 for $x \in C_{\mathcal{A}}(g^2) \cup \{a\}$

Proof.

$$X = C_A(g^2) \cup \{a, a^g\}$$
 Order X with $a < a^g$.

$$f_1(x) = \begin{cases} x & x \ge x^g \\ -x & x < x^g \end{cases} \qquad f_2(x) = \begin{cases} x^{g^{-1}} & x \ge x^g \\ -x^g & x < x^g \end{cases}$$

Binarity: $f_1(x)^h = f_2(x)$

(g or g^{-1} , except for $(-a, a^g) \mapsto (-a^g, a)$ via $+a - a^g$.) $0^h = 0$; $h \in G$; and $x^h = x^g$ on $C_A(g^2) \cup \{a\} \dots$

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

Suppose $A = \mathbb{F}^+$, $G \leq \mathbb{F}^\# \cdot \operatorname{Aut}(\mathbb{F}/\mathbb{F}_p)$ is primitive and binary. Then

•
$$\mathbb{F} = \mathbb{F}_{p}, \, G \leq \langle \pm 1 \rangle \leq \mathbb{F}^{\times}$$
; or

•
$$G = K \cdot \langle \sigma \rangle$$
, $o(\sigma) = 2$, $K = \ker N_{\mathbb{F}/\mathbb{F}_0}$.

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

Suppose $A=\mathbb{F}^+,\,G\leq\mathbb{F}^\#\cdot\operatorname{Aut}(\mathbb{F}/\mathbb{F}_p)$ is primitive and binary. Then

•
$$\mathbb{F} = \mathbb{F}_{p}, \, G \leq \langle \pm 1 \rangle \leq \mathbb{F}^{ imes}$$
; or

•
$$G = K \cdot \langle \sigma \rangle$$
, $o(\sigma) = 2$, $K = \ker N_{\mathbb{F}/\mathbb{F}_0}$.

Proof.

G is generated by involutions. *Case 1.* $G \leq \mathbb{F}^{\#}$: Then $G \leq \langle \pm 1 \rangle$. *Case 2.* $\overline{G} \subseteq \operatorname{Aut}(\mathbb{F}/\mathbb{F}_p)$ nontrivial. $\overline{G} = \langle \sigma \rangle$, order 2, $G \leq K \langle \sigma \rangle$. $G = (G \cap K) \langle t \rangle$ with $t = a\sigma$. To show: $K \leq G$.

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

$$G = K_0 \langle t \rangle, t = a\sigma.$$

 $k \in K_0, k \neq \pm 1.$

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) or *k*-sets

$$G = K_0 \langle t \rangle, t = a\sigma.$$

 $k \in K_0, k \neq \pm 1.$

$$u^{\sigma} = (ac)u$$

 $u^t = cu$

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) or *k*-sets

Binary Primitive Affine Groups $G = K_0 \langle t \rangle, t = a\sigma.$ $k \in K_0, k \neq \pm 1.$

$$\begin{aligned} u^{\sigma} &= (ac)u\\ u^{t} &= cu\\ (0, u, (1+k)u) \sim_{\mathbf{2}} (0, u, (1+k^{-1})u) \end{aligned}$$

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) or *k*-sets

$$G = K_0 \langle t \rangle, t = a\sigma.$$

 $k \in K_0, k \neq \pm 1.$

$$u^{\sigma} = (ac)u$$

$$u^{t} = cu$$

$$(0, u, (1 + k)u) \sim_{2} (0, u, (1 + k^{-1})u)$$

$$(0, u, (1 + k)u) \sim (0, u, (1 + k^{-1})u)$$

$$u^{g} = u, (ku)^{g} = k^{-1}u$$

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) or *k*-sets

$$G = K_0 \langle t \rangle, t = a\sigma.$$

 $k \in K_0, k \neq \pm 1.$

$$u^{\sigma} = (ac)u$$

$$u^{t} = cu$$

$$(0, u, (1 + k)u) \sim_{2} (0, u, (1 + k^{-1})u)$$

$$(0, u, (1 + k)u) \sim (0, u, (1 + k^{-1})u)$$

$$u^{g} = u, (ku)^{g} = k^{-1}u$$

$$g = c't$$

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) or *k*-sets

$$G = K_0 \langle t \rangle, t = a\sigma.$$

 $k \in K_0, k \neq \pm 1.$

$$u^{\sigma} = (ac)u$$

$$u^{t} = cu$$

$$(0, u, (1 + k)u) \sim_{2} (0, u, (1 + k^{-1})u)$$

$$(0, u, (1 + k)u) \sim (0, u, (1 + k^{-1})u)$$

$$u^{g} = u, (ku)^{g} = k^{-1}u$$

$$g = c't$$

$$(kc'u)^{t} = k^{-1}u$$

$$k^{-1}c'^{-1}(cu) = k^{-1}u$$

$$c' = c \in G$$

Characteristic 2

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) or *k*-sets

Binary Primitive Affine Groups

- **1** $F_2G = 1$
- ② *FG* ≠ 1
- FG cyclic
- $G = FG\langle t \rangle$

(

• A is FG-irreducible

Recognition

Irreducibility

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

• A is FG-irreducible

Irreducibility

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

A is FG-irreducible

Proof.

V FG-irreducible. $VN_G(V)$ binary. $N_G(V)$ is generated by involutions. $N_G(V) = G$

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

G has elementary abelian Sylow 2-subgroups

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

G has elementary abelian Sylow 2-subgroups

Application:

[Bender] If FG = 1 then $G = \prod PSL_2, J_1$, Ree

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

G has elementary abelian Sylow 2-subgroups

Application:

[Bender] If FG = 1 then $G = \prod PSL_2, J_1$, Ree

 $L \triangleleft G$ simple $V \leq A L$ -irreducible

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

G has elementary abelian Sylow 2-subgroups

Application:

[Bender] If FG = 1 then $G = \prod PSL_2, J_1$, Ree

 $L \triangleleft G$ simple $V \leq A L$ -irreducible

Lemma (Main Lemma)

 $N_G(V)$ contains all involutions commuting with L.

G = L. Then one uses the internal structure of *L*.

Sylow 2-subgroups

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

- In characteristic 2, G has no element of order 4.
- In odd characteristic, G has no element of order p.

Characteristic 2:

$$o(g) = 4:$$

$$u^{g} = u + v \qquad v^{g} = v + w \qquad w^{g} = w$$

$$u^{g^{2}} = u + w \qquad (u + v)^{g^{2}} = u + v + w$$

$$(0, u, v, u + v) \sim_{2} (0, u, v, u + v + w)$$
But $(0, u, v, u + v) \not\sim (0, u, v, u + v + w)$.

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

 $H \triangleleft G$. V *H*-irreducible. $h \in H$, h^2 nontrivial on *V*. $t \in G$ an involution commuting with *h*. Then $t \in N(V)$.

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

 $H \triangleleft G$. V *H*-irreducible. $h \in H$, h^2 nontrivial on *V*. $t \in G$ an involution commuting with *h*. Then $t \in N(V)$.

Proof.

$$(\mathbf{0}, \mathbf{v} + \mathbf{v}^t, \mathbf{v} + \mathbf{v}^h, \mathbf{v}^t + \mathbf{v}^h) \sim_2 (\mathbf{0}, \mathbf{v} + \mathbf{v}^t, \mathbf{v} + \mathbf{v}^h, \mathbf{v} + \mathbf{v}^{ht})$$

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

Proof.

 $H \triangleleft G$. V *H*-irreducible. $h \in H$, h^2 nontrivial on *V*. $t \in G$ an involution commuting with *h*. Then $t \in N(V)$.

$(0, v + v^t, v + v^h, v^t + v^h) \sim_2 (0, v + v^t, v + v^h, v + v^{ht})$ $v^t - v \sim v^{ht} - v^h \qquad \text{by } h$

And t (or 1) does the rest.

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

 $H \triangleleft G.$ V *H*-irreducible. $h \in H, h^2$ nontrivial on *V*. $t \in G$ an involution commuting with *h*. Then $t \in N(V)$.

Proof.

$$(0, v + v^t, v + v^h, v^t + v^h) \sim_2 (0, v + v^t, v + v^h, v + v^{ht})$$

 $(0, v + v^t, v + v^h, v^t + v^h) \sim (0, v + v^t, v + v^h, v + v^{ht})$

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

Lemma

 $H \triangleleft G$. V *H*-irreducible. $h \in H$, h^2 nontrivial on *V*. $t \in G$ an involution commuting with *h*. Then $t \in N(V)$.

Proof.

$$(0, v + v^{t}, v + v^{h}, v^{t} + v^{h}) \sim_{2} (0, v + v^{t}, v + v^{h}, v + v^{ht})$$
$$(0, v + v^{t}, v + v^{h}, v^{t} + v^{h}) \sim (0, v + v^{t}, v + v^{h}, v + v^{ht})$$
$$v + v^{h} \mapsto v + v^{h} \qquad v^{h} - v \mapsto v^{ht} - v^{t}$$
$$V \mapsto V \qquad V \mapsto V^{t}$$

Review

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) or *k*-sets

Binary Primitive Affine Groups

Even Characteristic:

- **2** $FG \neq 1$ (Main Lemma, Syl₂)
- 3 *FG* cyclic, $G = FG\langle t \rangle$
- A is FG-irreducible $(VN_G(V))$
- $\mathbb{F} = C_{\text{End}(A)}(FG)$, Recognition

Review

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) or *k*-sets

Binary Primitive Affine Groups

Even Characteristic:

- **1** $F_2G = 1$
- **2** $FG \neq 1$ (Main Lemma, Syl₂)
- 3 *FG* cyclic, $G = FG\langle t \rangle$
- A is FG-irreducible $(VN_G(V))$
- $\mathbb{F} = C_{\text{End}(A)}(FG)$, Recognition

Odd characteristic:

Complete reducibility ...; Kill E(G) ...; Eigenspace decomposition relative to elementary abelian 2-subgroups ...

Review

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) or *k*-sets

Binary Primitive Affine Groups

Even Characteristic:

- **1** $F_2G = 1$
- **2** $FG \neq 1$ (Main Lemma, Syl₂)
- 3 *FG* cyclic, $G = FG\langle t \rangle$
- A is FG-irreducible $(VN_G(V))$
- $\mathbb{F} = C_{\text{End}(A)}(FG)$, Recognition

Odd characteristic:

Complete reducibility ...; Kill E(G) ...; Eigenspace decomposition relative to elementary abelian 2-subgroups ...

About the Main Lemma:

Homogeneous Graphs: $K_n \otimes K_n$

The Relational Complexity of a Permutation Group

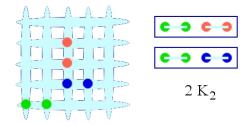
> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

Binary Primitive Affine Groups

$$K_5 \otimes K_5 = E(K_{5,5}) = \operatorname{Sym}(5) \wr \operatorname{Sym}(2)$$



Failure of homogeneity in $Sym(n) \wr Sym(2)$ ($\rho = 4$) [Sheehan 1974, Gardiner 1976]

n = 4: affine and primitive, $\rho = 4$. Main Lemma Fails for n = 4 (not binary). But for n = 3 this is binary! $-AO_2^-(3)$

Problems

The Relational Complexity of a Permutation Group

> Gregory Cherlin

Relational Complexity

Aut(*n*) on *k*-sets

- Non-affine case
 - Reduce to simple socle with maximal subgroup as point stabiliizer
 - Treat geometrically meaningful maximal subgroups
 - Explore with GAP
- Replace binary by *k*-homogeneous in a qualitative theory.