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The first classification theorem

Theorem (Fraïssé’s Classification Theorem)
Countable homogeneous structures correspond to
amalgamation classes of finite structures.

The Fraïssé limit: Q = limL (L: finite linear orders).

random graph, generic triangle-free graph

Good for existence: is it also good for non-existence?
(classification).
“Short answers to simple questions:” Yes.
Longer answer: sometimes . . .
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In more detail:

General theory for the finite case (Lachlan; CSFG
meets model theory)
A few cases of combinatorial interest fully classified, or
conjectured
Some sporadics, and some families, identified via
classification
Cases of particular interest: Ramsey classes

After a glance at the finite case, I will discuss three cases I
have been involved with (2 of them lately):
directed graphs; ordered graphs; graphs as metric spaces

The key: Lachlan’s classification of the homogeneous
tournaments.
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Finite homogeneous graphs

Sheehan 1975, Gardiner 1976

C5, E(K3,3), m · Kn

Lachlan’s view: two sporadics and a set of approximations
to∞ · K∞.
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Lachlan’s Finiteness Theorem

Given a finite relational language, there are finitely many
homogeneous structures Γi such that

The finite homogeneous structures are the
homogeneous substructures of the Γi .
The (model-theoretically) stable homogenous
structures are the homogeneous substructures.

Division of Labour

Group theory: primitive structures
Model theory: imprimitive structures (modulo primitive)
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Lachlan’s Finiteness Theorem

Given a finite relational language, there are finitely many
homogeneous structures Γi such that

The finite homogeneous structures are the
homogeneous substructures of the Γi .
The (model-theoretically) stable homogenous
structures are the homogeneous substructures.

Corollary: a stable homogeneous structure can be
approximated by finite homogeneous structures.
This is not true for the random graph—which can be
approximated by finite structures, but not by finite
homogeneous ones.

Division of Labour

Group theory: primitive structures
Model theory: imprimitive structures (modulo primitive)
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Binarity Conjecture

What if we bound the relational complexity of the language,
but not the number of relations?

Halford et al., Psychological Science, (2005)

Conjecture
A finite primitive homogeneous binary structure is

Equality on n points; or
An oriented p-cycle; or
An affine space over a finite field, equipped with an
anisotropic quadratic form.

Case Division.
Affine Non-affine

(abelian normal sub-
group)

(none)

Known Reduced to
almost simple case
(Wiscons)
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Development

Existence Henson 1973 (2ℵ0)
Partially ordered sets Schmerl 1979

Graphs Lachlan-Woodrow 1980 (induction on
amalgamation classes)

Tournaments Lachlan 1984 (Ramsey argument)
Digraphs Cherlin 1998 (L/H Smackdown)

CATALOG

1. Composite / degenerate In[T ], T [In]

2. Twisted imprimitive double covers, generic
multipartite, semigeneric

3. Exceptional primitive S(3), P, P(3)

4. Free amalgamation Omit In or tournaments.
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The Ramsey Classes

Ramsey precompact expansions of homogeneous
directed graphs—Jakub Jasiński, Claude Laflamme, Lionel
Nguyen Van Thé, Robert Woodrow
(arxiv 24 Oct 2013–23 Jul 2014 (v3))

In 2005, Kechris, Pestov and Todorcevic
provided a powerful tool . . . More recently, the
framework was generalized allowing for further
applications, and the purpose of this paper is to
apply these new methods in the context of
homogeneous directed graphs. In this paper, we
show that the age of any homogeneous directed
graph allows a Ramsey precompact expansion.
Moreover, we . . . describe the respective universal
minimal flows [for Aut(Γ)].
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LW-L method

(Lachlan/Woodrow 1980, Lachlan 1984)

CATALOG: TOURNAMENTS

Orders I1, Q
Local Orders C3, S(2)

Generic T∞

Case Division
(I) Omit I~C3: SL. . . hence S or L–1st 4 entries
(I′) (Omit ~C3I: the same.)
(II): Contain I~C3, ~C3I—generic (?)
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The Main Theorem

Theorem (Lachlan 1984)
Let A be an amalgamation class of finite tournaments which
contains the tournament I~C3. Then A contains every finite
tournament.

Definition
Let A′ = {A |Every A ∪ I is in A}

Imagine that we can show that A′ is an amalgamation class
containing I~C3. Then the proof is over!
(By induction on |A|.)

Actually, all we need is that A′ contains an amalgamation
class containing I~C3.
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Induction on Amalgamation classes

Definition
Let A∗ = {A |Every A ∪ L is in A}.

This is an amalgamation class contained in A.

Proposition
If A is an amalgamation class of finite tournaments
containing I~C3, then any tournament of the form IC3 ∪ L is in
A.

Taking stock: The proposition implies the theorem. That is,
nearly linear tournaments will give arbitrary tournaments by
a soft argument.
(Induction on amalgamation classes.)
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Lachlan’s Hammer (1984)

Definition
A+ = {A |All L[A] ∪ I are in A}.

Lemma
A+ ⊆ A∗

LACHLAN, with hammer, in 1984 (Artist’s conception)

The hammer (Artist’s conception)
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Mopping up

Lemma
If A is an amalgamation class of finite tournaments
containing I~C3, then A contains every 1-point extension of a
stack of ~C3’s.

Induction?
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The catalog

Nguyen van Thé, 2012: go forth and seek more Ramsey
classes among the ordered graphs.

Theorem (2013)
Every homogeneous ordered graph is (and was) known.

CATALOG

EPO Generic linear extensions of homogeneous partial
orders with strong amalgamation.

LT Generic linear orderings of infinite homogeneous
tournaments.

LG Generic linear orderings of homogeneous graphs with
strong amalgamation.

([EPO] comparability; [LT] “< =→”)
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Homogeneous linear extensions of POS

Dolinka and Mašulović 2012: Linear extensions of POS
EPO and homogeneous permutations (Cameron 2002)

Question
Is every primitive homogeneous linearly ordered structure
derived from a homogeneous structure without the order?

Open: Triples of linear orders, or beyond.

Conjecture (Minimal form)
A homogeneous primitive k-dimensional permutation is the
expansion of a fully generic k ′-dimensional permutation by
repetition and reversal.
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HOG: Case division

¬~C+
3 Linear extension of partial order, known

¬~C−3 Complement of the previous
~C±3 , ¬(1→ ~C+

3 ) Generically ordered local order
~Pc

3 , (I ⊥ ~P3),~I∞ Generically ordered Henson graph;
Lachlan’s method [Ch98, Chap. IV].
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Metrically Homogeneous Graphs

SURVEYS

Cameron 1998 “A census of infinite distance transitive
graphs,” Discrete Math. 192 (1998), 11–26.
Diameter δ; bipartite: Kn-free (cf. KoMePa 1988)

No doubt, further such variations are possible.

Cherlin 2011 “Two problems on homogeneous structures,
revisited,” in Contemporary Mathematics 558 (2011).
• Conjectured classification—catalog of variations
(cf. KoMePa 1988), supporting evidence.
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More Literature

1980 Lachlan/Woodrow: Diameter 2
1980 Cameron: Finite case
1982 Macpherson: locally finite distance transitive

case
1988/91 Moss: UN

1989 Moss: Limit law Th(UN)→ Th(UZ)

1992 Moss: U∞ again, ref. to LW80 and Ca80,
asked for a classification

201X AmChMp: Diameter 3 (in preparation)
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The Catalog

KOMJÁTH-MEKLER-PACH VARIATIONS

ΓδK ,C

Constraints on metric triangles.
δ: diameter;
C0,C1: bound the perimeter of a triangle of even
(resp. odd) length;
K− odd perimeter is at least 2K−;
K+ odd perimeter is at most 2(K+ + i) with i an edge
length.

HENSON VARIATIONS ΓS

Forbid (1, δ)-subspaces S (δ ≥ 3).

ΓδK ,C;S (KMP+H)
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Conjecture

CATALOG

Exceptional Finite
Tree-like (one part of a k .`-regular tree
with rescaled metric)
Diameter 2

Generic ΓδK ,C;S for suitable values of δ,K ,C
Antipodal variation Γδap;n
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Which parameters?

Question
For which choices of parameters δ,K ,C (and S) do we
actually get an amalgamation class?

Observation. The classes of forbidden triangles are
uniformly definable in

Z : +,≤ (Presburger Arithmetic)

Corollary

For each k, the condition (Ak ) that Gδ
K ,C satisfy

amalgamation up to order k is a boolean combination of
congruences and inequalities involving Z-linear
combinations of the parameters.
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A5

δ ≥ 2; 1 ≤ K− ≤ K+ ≤ δ or K− =∞, K+ = 0;
C0 even, C1 odd; 2δ + 1 ≤ C0,C1 ≤ 3δ + 2

and

(I) K− =∞ and K+ = 0, C1 = 2δ + 1; if δ = 2 then C′ = 8;
or (II) K− <∞ and C ≤ 2δ + K−, and

δ ≥ 3;
C = 2K− + 2K+ + 1;
K− + K+ ≥ δ;
K− + 2K+ ≤ 2δ − 1

(IIA) C′ = C + 1 or
(IIB) C′ > C + 1, K− = K+, and 3K+ = 2δ − 1

or (III) K− <∞ and C > 2δ + K−, and
If δ = 2 then K+ = 2;
K− + 2K+ ≥ 2δ − 1 and 3K+ ≥ 2δ;
If K− + 2K+ = 2δ − 1 then C ≥ 2δ + K− + 2;
If C′ > C + 1 then C ≥ 2δ + K+.
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Main Lemma

Lemma

If AδC,K has amalgamation up to order 5, then it has
amalgamation.

Proof.
Using the conditions on the previous page, define an
amalgamation strategy on a case-by-case basis.
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Strategy

r−, r+ (lower, upper bounds); r̃ (alternative upper bound)
(I) If K− =∞: r−

(II) If K− <∞ and C ≤ 2δ + K−:
C′ = C + 1

Case (a) r+ ≤ K+ (b) r− ≥ K−, r+ > K+ (c) r− < K− < K+ < r+

Value min(r+, r̃) r− K+

C′ > C + 1

Case (a) r+ < K+ (b) r− > K+ (c) r− ≤ K+ ≤ r+

Value r+ r− K+ − ε (0 or 1)

ε = 1 if d(a1, x) = d(a2, x) = δ (some x)

(III) If K− <∞ and C > 2δ + K−:
C′ = C + 1

Case (a) r− > K− (b) r+ ≤ K− (c) r− ≤ K− < r+

Value r− min(r+, r̃) K− + ε (0 or 1)

ε = 1 if K− + 2K+ = 2δ − 1 and d(a1, x) = d(a2, x) = δ (some x)

C′ > C + 1

Case (a) r− > K− (b) r− ≤ K− , r+ < K+ (c) r− ≤ K− < K+ ≤ r+

Value r− r+ min(K+,C − 2δ − 1)
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Evidence

Diameter 3
Full classification of classes determined by constraints
of order 3
Full classification of exceptional types (Γ1 imprimitive or
finite)
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Problems

Is the relation
∧
A `

∨
B decidable?

Small languages
Homogeneous structures with k linear orders
G + T = T + T . One family of examples: generic lift of
a homogeneous digraph.
One asymmetric ternary relation (generalizing
tournaments).

Metric homogeneity
Ramsey expansions of Metrically Homogeneous
Graphs (Finiteness conjecture for partial metrically
homogeneous graphs of bounded diameter)
Show that for the classification of metrically
homogeneous graphs, finite diameter suffices

Beyond homogeneity
Rado constraints (and Ramsey theory)—decision
problems, Ramsey theory.
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