[Finite Binary](#page-42-0) Homogeneous **Structures**

[Binary Affine](#page-28-0)

Finite Binary Homogeneous Structures

Gregory Cherlin

July 10 Edinburgh

KOD KORKADD ADD DO YOUR

The king and the hermit

[Finite Binary](#page-0-0) Homogeneous **Structures**

Cherlin

Another Inadequate Gift
Persian, 1556

 290

The king finally understands that meaningful gifts come from lifelong devotion, the only certain road to heaven.

[Finite Binary](#page-0-0) Homogeneous **Structures**

Cherlin

[Origins](#page-2-0)

[Relational Complexity](#page-18-0)

[Binary Affine Groups](#page-28-0)

イロトメ 倒 トメ 君 トメ 君 トー 高山 299

A point of departure

[Finite Binary](#page-0-0) Homogeneous **Structures**

[Origins](#page-2-0)

[Binary Affine](#page-28-0)

Theorem (Macintyre, 1971)

Let F be an infinite field whose theory admits quantifier elimination. Then F is algebraically closed.

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

A point of departure

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Origins](#page-2-0)

[Binary Affine](#page-28-0)

Theorem (Macintyre, 1971)

Let F be an infinite field whose theory admits quantifier elimination. Then F is algebraically closed.

Problem

What are the finite primitive structures admitting quantifier elimination in a binary relational language?

KOD KORKADD ADD DO YOUR

A point of departure

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Origins](#page-2-0)

[Binary Affine](#page-28-0)

Theorem (Macintyre, 1971)

Let F be an infinite field whose theory admits quantifier elimination. Then F is algebraically closed.

Problem

What are the finite primitive structures admitting quantifier elimination in a binary relational language?

Conjecture

- *Equality (*Sym(*n*)*nat); or*
- *Oriented p-Cycle (* $\mathbb{Z}/p\mathbb{Z}_{\text{real}}$ *);*

Affine space equipped with an anisotropic quadratic form (AO[−] *nat)*

The Affine Case

[Finite Binary](#page-0-0) Homogeneous **Structures**

[Origins](#page-2-0)

[Binary Affine](#page-28-0)

Fact (OS)

The socle of a primitive permutation group is either elementary abelian, or a direct product of isomorphic nonabelian simple groups.

KOD KORKADD ADD DO YOUR

The Affine Case

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Origins](#page-2-0)

[Binary Affine](#page-28-0)

Fact (OS)

The socle of a primitive permutation group is either elementary abelian, or a direct product of isomorphic nonabelian simple groups.

Theorem

An affine primitive binary group is either a p-cycle or affine space with an anisotropic quadratic form.

KOD KORKADD ADD DO YOUR

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Origins](#page-2-0)

[Binary Affine](#page-28-0)

Example (Sheehan, Gardiner)

The homogeneous finite graphs are as follows.

KOD KOD KED KED E VAN

- Pentagon (D_5) ;
- $(=_3)^2$ $(\text{Sym}_3 \wr \text{Sym}_2)$ pro;
- $\mathcal{K}_m^{\pm} [K_n^{\mp}]$ $(\mathrm{Sym}_n \wr \mathrm{Sym} n)$ imp

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Origins](#page-2-0)

[Binary Affine](#page-28-0)

Example (Sheehan, Gardiner)

The homogeneous finite graphs are as follows.

- Pentagon (*D*₅);
- $(=_3)^2$ $(\text{Sym}_3 \wr \text{Sym}_2)$ pro;
- $\mathcal{K}_m^{\pm} [K_n^{\mp}]$ $(\mathrm{Sym}_n \wr \mathrm{Sym} n)$ imp

LACHLAN: The finite homogeneous structures for a finite relational language fall into finitely many families, of two types:

- sporadic finite examples
- Families of smooth approximations to an infinite stable structure, also homogeneous for the same language

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Origins](#page-2-0)

[Binary Affine](#page-28-0)

Example (Sheehan, Gardiner)

The homogeneous finite graphs are as follows.

- Pentagon (*D*₅);
- $(=_3)^2$ (Sym₃ \gtrsim Sym₂)_{pro};
- $\mathcal{K}_m^{\pm}[\mathcal{K}_n^{\mp}]$ $(\mathrm{Sym}_n \wr \mathrm{Sym} n)$ _{imp}

LACHLAN: The finite homogeneous structures for a finite relational language fall into finitely many families, of two types:

- **•** sporadic finite examples
- Families of smooth approximations to an infinite stable structure, also homogeneous for the same language Smooth approximations: the induced automorphism group is the full automorphism group.

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Origins](#page-2-0)

[Binary Affine](#page-28-0)

Example (Sheehan, Gardiner)

The homogeneous finite graphs are as follows.

- \bullet Pentagon (D_5) ;
- $(=_3)^2$ $(\text{Sym}_3 \wr \text{Sym}_2)$ pro;
- $\mathcal{K}_m^{\pm} [K_n^{\mp}]$ $(\mathrm{Sym}_n \wr \mathrm{Sym} n)$ imp

LACHLAN: The finite homogeneous structures for a finite relational language fall into finitely many families, of two types:

- sporadic finite examples
- Families of smooth approximations to an infinite stable structure, also homogeneous for the same language

CFSG

Smooth Approximation

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Origins](#page-2-0)

[Binary Affine](#page-28-0)

LACHLAN: One should be able to do something similar, starting with smooth approximation, and including nontrivial geometries.

E.g. $GL(V)_{nat}$, which is not homogeneous for a (fixed) finite relational language.

KOD KORKADD ADD DO YOUR

Smooth Approximation

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Origins](#page-2-0)

[Binary Affine](#page-28-0)

LACHLAN: One should be able to do something similar, starting with smooth approximation, and including nontrivial geometries.

E.g. $GL(V)_{nat}$, which is not homogeneous for a (fixed) finite relational language.

KANTOR, LIEBECK, MACPHERSON, 1989

From smooth approximability—or a bound on 5-types—one gets a classification of the primitive examples. Grassmannians of classical or semi-classical geometries.

KORK ERKER ADAM ADA

Meanwhile ...

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Origins](#page-2-0)

[Binary Affine](#page-28-0)

HRUSHOVSKI 1989: Quasifinite axiomatizability of totally categorical structures (and \aleph_0 -categorical, \aleph_0 -stable).

Trento, July, 1987: Trying to combine Hrushovski and KLM

KOD KORKADD ADD DO YOUR

Meanwhile ...

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Origins](#page-2-0)

[Binary Affine](#page-28-0)

HRUSHOVSKI 1989: Quasifinite axiomatizability of totally categorical structures (and \aleph_0 -categorical, \aleph_0 -stable).

Trento, July, 1987: Trying to combine Hrushovski and KLM stable embedding, some form of type amalgamation *V* vs. (*V*, *V* ∗)

KOD KORKADD ADD DO YOUR

Meanwhile ...

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Origins](#page-2-0)

[Binary Affine](#page-28-0)

HRUSHOVSKI 1989: Quasifinite axiomatizability of totally categorical structures (and \aleph_0 -categorical, \aleph_0 -stable).

Trento, July, 1987: Trying to combine Hrushovski and KLM stable embedding, some form of type amalgamation *V* vs. (*V*, *V* ∗)

MSRI, 1989-1990: affine duality (Hrushovski), connection to simple theories, type amalgamation, etc. (and ACFA)

KOD KARD KED KED BE YOUR

My question

- [Finite Binary](#page-0-0) Homogeneous **Structures**
	-

[Origins](#page-2-0)

-
- [Binary Affine](#page-28-0)

• Can we do something with finite homogeneous structures in a relational language of bounded complexity?

[Finite Binary](#page-0-0) Homogeneous **Structures**

Cherlin

Relational **[Complexity](#page-18-0)**

[Origins](#page-2-0)

2 [Relational Complexity](#page-18-0)

[Binary Affine Groups](#page-28-0)

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

[Finite Binary](#page-0-0)

Structures

Homogeneous

Relational **[Complexity](#page-18-0)**

[Binary Affine](#page-28-0)

Definition

$$
a \sim b \iff b \in G \cdot a \tag{1}
$$

$$
a \sim_k b \iff a_l \sim b_l \text{ for } |l| = k \tag{2}
$$

$$
\rho(G,X)=\min(k\,|\,a\sim_k b\implies a\sim b)\qquad\qquad(3)
$$

I feel this is a natural, and perhaps even fundamental, invariant.

[Finite Binary](#page-0-0) Homogeneous **Structures**

Relational **[Complexity](#page-18-0)**

Definition

$$
a \sim b \iff b \in G \cdot a \tag{1}
$$
\n
$$
a \sim_k b \iff a_l \sim b_l \text{ for } |l| = k \tag{2}
$$
\n
$$
\rho(G, X) = \min(k \mid a \sim_k b \implies a \sim b) \tag{3}
$$

KORKARYKERKE PORCH

Example

$$
\text{GL}(V)_{\text{nat}}: \begin{cases} d+1 & \text{if } F \neq \mathbb{F}_2 \\ \text{else } d \end{cases}
$$

[Finite Binary](#page-0-0) Homogeneous **Structures**

Relational **[Complexity](#page-18-0)**

Definition

$$
a \sim b \iff b \in G \cdot a \tag{1}
$$
\n
$$
a \sim_k b \iff a_l \sim b_l \text{ for } |l| = k \tag{2}
$$
\n
$$
\rho(G, X) = \min(k \mid a \sim_k b \implies a \sim b) \tag{3}
$$

KORKARA KERKER DAGA

Example

$$
\text{GL}(V)_{\text{nat}}: \begin{cases} d+1 & \text{if } F \neq \mathbb{F}_2 \\ \text{else } d \end{cases}
$$

Because $(e, \lambda(e)) \sim_d (e, \lambda'(e))$

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

Relational **[Complexity](#page-18-0)**

[Binary Affine](#page-28-0)

Definition

$$
a \sim b \iff b \in G \cdot a \tag{1}
$$
\n
$$
a \sim_k b \iff a_l \sim b_l \text{ for } |l| = k \tag{2}
$$
\n
$$
\rho(G, X) = \min(k \mid a \sim_k b \implies a \sim b) \tag{3}
$$

KORK ERKER ADAM ADA

Example

$$
\text{GL}(V)_{\text{nat}}: \begin{cases} d+1 & \text{if } F \neq \mathbb{F}_2 \\ \text{else } d \end{cases}
$$

Because $(e, \lambda(e)) \sim_d (e, \lambda'(e))$ $\rho \approx$ dimension?

Relational complexity and computational **complexity**

[Finite Binary](#page-0-0) Homogeneous **Structures**

Relational **[Complexity](#page-18-0)**

Example

$$
GL(V)_{nat}: \begin{cases} d+1 & \text{if } F \neq \mathbb{F}_2 \\ \text{else } d \\ \text{Sym}_n \text{ on } \left[\begin{array}{c} n \\ k \end{array} \right]: \lfloor n_2 k \rfloor + 2; \\ \text{Alt}(n) \text{ on } \left[\begin{array}{c} n \\ k \end{array} \right]: n-3 \ (k \geq 3, 2k+2 \neq n)
$$

 $\rho_S(n, k) \approx \ln_2 k$; $\rho_A(n, k) \approx n - 3$

KOD CONTRACT A BOAR KOD A CO

Relational complexity and computational complexity

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

Relational **[Complexity](#page-18-0)**

[Binary Affine](#page-28-0)

Example

$$
GL(V)_{nat}: \begin{cases} d+1 & \text{if } F \neq \mathbb{F}_2 \\ \text{else } d \end{cases}
$$

\n
$$
Sym_n \text{ on } \begin{bmatrix} n \\ k \end{bmatrix}: \lfloor \ln_2 k \rfloor + 2; \\ \text{Alt}(n) \text{ on } \begin{bmatrix} n \\ k \end{bmatrix}: n-3 \ (k \geq 3, 2k+2 \neq n)
$$

 $\rho_S(n, k) \approx \ln_2 k;$ $\rho_A(n, k) \approx n-3$

Base: minimal set with trivial stabilizer.

The base bounds the complexity of group elements; the relational complexity bounds the complexity of the action. GLUCK-SERESS-SHALEV 1998 Base size is bounded as a function of complexity of composition factors (e.g., 4 in the solvable case).K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Orthogonal groups

[Finite Binary](#page-0-0) Homogeneous **Structures**

Relational **[Complexity](#page-18-0)**

[Binary Affine](#page-28-0)

AGO(*d*, *q*) acting naturally.

Anistropic case: $\rho = 2$. Isotropic case: roughly *d* $(e, \lambda(e)), (e, \lambda(e) + v)$ with $v \perp e, v$.

Orthogonal groups

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

Relational **[Complexity](#page-18-0)**

[Binary Affine](#page-28-0)

AGO(*d*, *q*) acting naturally.

Anistropic case: $\rho = 2$. Isotropic case: roughly *d* $(e, \lambda(e)), (e, \lambda(e) + v)$ with $v \perp e, v$. E.g. *AGO*[−](6, 2): $ρ = 6$ (Wiscons via GAP)

KOD CONTRACT A BOAR KOD A CO

Orthogonal groups

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

Relational **[Complexity](#page-18-0)**

[Binary Affine](#page-28-0)

AGO(*d*, *q*) acting naturally.

Anistropic case: $\rho = 2$. Isotropic case: roughly *d* $(e, \lambda(e)), (e, \lambda(e) + v)$ with $v \perp e, v$. E.g. *AGO*−(6, 2): ρ = 6 (WISCONS via GAP) . . . either linear algebra is irrelevant, or it is essential

KOD CONTRACT A BOAR KOD A CO

[Finite Binary](#page-0-0) Homogeneous **Structures**

Cherlin

[Binary Affine](#page-28-0) **Groups**

[Relational Complexity](#page-18-0)

3 [Binary Affine Groups](#page-28-0)

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Outline

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Binary Affine](#page-28-0) **Groups**

Theorem

An affine primitive binary group (*G*, *V*) *is either a p-cycle or affine space with an anisotropic quadratic form.*

Remark

G = *V*.*H, V acts by translation and H acts linearly.*

Target $H = O^-(\mathbb{F}_{q^2})$ with quadratic form $N_{q^2/q}$ (dihedral).

Outline of Proof.

- **•** *H* is solvable
- *H* embeds into a 1-dimensional semilinear group $\Gamma(1,\mathbb{F})$

$$
\bullet\ \mathbb{F}=\mathbb{F}_{q^2},\,H=K\cdot\langle\sigma\rangle,\,K=\ker N
$$

[Finite Binary](#page-0-0) Homogeneous **Structures**

[Binary Affine](#page-28-0) **Groups**

The 1-dimensional semilinear case, $G \leq AGL(1,\mathbb{F})$, $\mathbb{F}_+ \leq G$; $G \not\leq \mathbb{F}_+ \cdot \langle \pm 1 \rangle$

KORKARYKERKE PORCH

G is generated by involutions

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Binary Affine](#page-28-0) **Groups**

The 1-dimensional semilinear case, $G \leq AGL(1,\mathbb{F})$, $\mathbb{F}_{+} \leq G$; $G \not\leq \mathbb{F}_{+} \cdot \langle \pm 1 \rangle$

• *G* is generated by involutions

 $G \leq \mathbb{F}_+ \cdot K \cdot \langle \sigma \rangle$, $G = \mathbb{F}_+ \cdot X \cdot \langle a\sigma \rangle$ Take $a = 1$ for simplicity.

KORK STRAIN A STRAIN A STRAIN

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Binary Affine](#page-28-0) **Groups**

The 1-dimensional semilinear case, $G \leq AGL(1, \mathbb{F})$, $\mathbb{F}_{+} \leq G$; $G \not\leq \mathbb{F}_{+} \cdot \langle \pm 1 \rangle$

• *G* is generated by involutions

 $G \leq \mathbb{F}_+ \cdot K \cdot \langle \sigma \rangle$, $G = \mathbb{F}_+ \cdot X \cdot \langle a\sigma \rangle$ Take $a = 1$ for simplicity. $c \in K$: $u^{\sigma} = uc$ (Theorem 90) $k \neq \pm 1$ in *X*

0, *u*, (1 + *k*)*u* ∼² 0, *u*, (1 + *k* −1)*u*

KORKARA KERKER DAGA

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Binary Affine](#page-28-0) **Groups**

The 1-dimensional semilinear case, $G \leq AGL(1, \mathbb{F})$, $\mathbb{F}_{+} \leq G$; $G \not\leq \mathbb{F}_{+} \cdot \langle \pm 1 \rangle$

• *G* is generated by involutions

 $G \leq \mathbb{F}_+ \cdot K \cdot \langle \sigma \rangle$, $G = \mathbb{F}_+ \cdot X \cdot \langle a\sigma \rangle$ Take $a = 1$ for simplicity. $c \in K$: $u^{\sigma} = uc$ (Theorem 90) $k \neq \pm 1$ in *X*

$$
0, u, (1 + k)u \sim_2 0, u, (1 + k^{-1})u
$$

The conjugating element must be $c\sigma$ as *u* is fixed. So $c \in G$.

KORK STRAIN A STRAIN A STRAIN

Examples

Cherlin

[Binary Affine](#page-28-0) **Groups**

Solvable case

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Binary Affine](#page-28-0) **Groups**

Induction:

1, $G = VH$, $K \triangleleft H$, V_0 K -irreducible.

Then $\rho(V_0N_H(V_0)) \leq \rho(G)$

2. *K* elementary abelian 2-group, $V = \bigoplus V_\lambda$ weight spaces. Then $\rho(V_\lambda N(V_\lambda)) \leq \rho(G)$

KOD CONTRACT A BOAR KOD A CO

(The restricted group is primitive in both cases.)

Solvable case

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Binary Affine](#page-28-0) **Groups**

Induction:

1, $G = VH$, $K \triangleleft H$, V_0 K -irreducible.

Then $\rho(V_0N_H(V_0)) \leq \rho(G)$

2. *K* elementary abelian 2-group, $V = \bigoplus V_\lambda$ weight spaces. Then $\rho(V_\lambda N(V_\lambda)) \leq \rho(G)$

KOD KARD KED KED BE YOUR

(The restricted group is primitive in both cases.)

A more technical lemma in this spirit . . .

Normalization lemma

[Finite Binary](#page-0-0) Homogeneous **Structures**

[Binary Affine](#page-28-0) **Groups**

Lemma (Main Lemma)

Let G = *VH* affine and binary. Let $K \triangleleft H$, $W \leq V$ an *irreducible K -submodule. t* ∈ *G* is an involution; k ∈ K , v ∈ W with

$$
v^k \neq \pm v, \quad v^t - v \sim v^{kt} - v^k
$$
 under H (e.g., k, t commute)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q*

Then $W^t = W$

Normalization lemma

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Binary Affine](#page-28-0) **Groups**

Lemma (Main Lemma)

Let G = *VH* affine and binary. Let $K \triangleleft H$, $W \leq V$ an *irreducible K -submodule. t* ∈ *G* is an involution; k ∈ K , v ∈ W with

$$
v^k \neq \pm v, \quad v^t - v \sim v^{kt} - v^k
$$
 under H (e.g., k, t commute)

Then $W^t = W$

Proof.

$$
(u_1, u_2, u_3, u_4) = (0, v + v^k, v + v^t, v^k + v^t),
$$
 $u'_4 = v + v^{kt}.$

$$
(u_1, u_2, u_3, u_4) \sim (u_1, u_2, u_3, u'_4)
$$

— but *u*₂ ∈ *W*, *u*₃ − *u*₄ ∈ *W*, *u*₃ − *u*₄′ ∈ *W*^{*t*}.

Origin of the Lemma

Cherlin

[Binary Affine](#page-28-0) **Groups**

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Origin of the Lemma

 $V = 2^4$, $H = D_3 \wr S_2$, $K = D_3^2$ *W* = horizontal or vertical, $K_4 = \mathbb{F}_4$ with $\check{\mathbb{F}}_4^{\times}$ $_4^\times \langle \sigma \rangle$ acting.

K ロ > K 個 > K 差 > K 差 > → 差 → の Q Q →

Toward Solvability

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Binary Affine](#page-28-0) Groups

 $G = VH$

Target: $EG = 1$ (no nontrivial quasisimple factor)

- Char 2:
	- Torsion: no elements of order 4
	- (Bender) $H = \text{PSL}_2$, J_1 , or 2G_2
	- Eliminate via action of Borel subgroup and induction

• Odd char:

- Torsion: no *p*-elements, complete reducibility
- **Exclude Q₈**, Alt₄
- $L \triangleleft EG$: PSL₂ or 2B_2
- Weight spaces V_{λ} for max el. abelian 2-group E : $u_\lambda^g = f(\lambda)u_\lambda$
- *NG*(*E*)-orbits on Λ length at most 2
- \bullet *EG* = 1

Problems

[Finite Binary](#page-0-0) Homogeneous **Structures**

Gregory

[Binary Affine](#page-28-0) **Groups**

- **Computational complexity of** $\rho(G, X)$ **in the primitive** case, and in general.
- Qualitative theory of primitive *k*-ary groups (including the binary non-affine case)
	- Lower bounds on ρ for most OS-types, reducing to affine and almost simple cases (WISCONS, in progress)
	- Affine case: More representation theory
	- Almost simple case: Aschbacher classification should reduce to small maximal subgroups

KORK ERKER ADAM ADA

- **•** Estimate ρ for classical actions.
- • Imprimitive case (model theory)??