Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

Census t Evidence

infinite diameter

Metrically Homogeneous Graphs: A complete Census?

Gregory Cherlin

Wednesday, July 27 Finite/Pseudofinite

Outline

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

nfinite diameter

History

- Census reports; conjecture
- Evidence
- Infinite Diameter

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census taker Evidence

infinite diameter

History

Census takers

3 Evidence

History: Klein to Urysohn

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census taker

Evidence

infinite diameter U est homogène en ce sens que, les ensembles finis et congruents A et B (situés dans U) étant quelconques, il existe une représentation isométrique de U sur lui-même transformant A en B. —(Urysohn 1927 CRAS)

metric congruence \implies Klein congruence (Erlangen program: the automorphism group determines the language)

History: Klein to Urysohn

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census taker

Evidence

infinite diameter U est homogène en ce sens que, les ensembles finis et congruents A et B (situés dans U) étant quelconques, il existe une représentation isométrique de U sur lui-même transformant A en B. —(Urysohn 1927 CRAS)

metric congruence \implies Klein congruence (Erlangen program: the automorphism group determines the language)

We require this for labeled sets.

History: Henson to Moss

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census taker

Evidence

infinite diameter Henson 1971: A family of countable homogeneous graphs Woodrow 1979: There are four countable ultrahomogeneous graphs without triangles Lachlan/Woodrow 1980: Countable ultrahomogeneous undirected graphs

History: Henson to Moss

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers Evidence infinite Henson 1971: A family of countable homogeneous graphs Woodrow 1979: There are four countable ultrahomogeneous graphs without triangles Lachlan/Woodrow 1980: Countable ultrahomogeneous undirected graphs

Larry Moss 1992: Distanced graphs

... whether every distance homogeneous graph is distance finite. In the countable case, an answer to this question might be a step towards a classification of the distance homogeneous graphs. [...cf. Cameron, Lachlan/Woodrow]

MR1169148: As the author notes, the problem of characterizing all the countable homogeneous graphs for the expanded language remains open.

History: Henson to Moss

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census taker Evidence infinite

Larry Moss 1992: Distanced graphs

... whether every distance homogeneous graph is distance finite. In the countable case, an answer to this question might be a step towards a classification of the distance homogeneous graphs. [...cf. Cameron, Lachlan/Woodrow]

MR1169148: As the author notes, the problem of characterizing all the countable homogeneous graphs for the expanded language remains open.

Cameron 1977: 6-Transitive graphs (finite) Macpherson 1982: Infinite distance transitive graphs of finite valency (locally finite)

 $T_{m,n}$: tree-like, each vertex belongs to *m n*-cliques.

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census taker

Evidence

infinite diameter Finite primitive homogeneous graphs: C_5 , $K_3 \otimes K_3$ C_n : metrically homogeneous of diameter $\delta = \lfloor n/2 \rfloor$

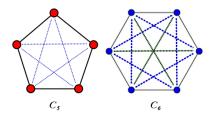
Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census take

infinite diameter Finite primitive homogeneous graphs: C_5 , $K_3 \otimes K_3$ C_n : metrically homogeneous of diameter $\delta = |n/2|$



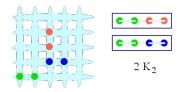
Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census take Evidence

infinite diameter Finite primitive homogeneous graphs: C_5 , $K_3 \otimes K_3$ C_n : metrically homogeneous of diameter $\delta = \lfloor n/2 \rfloor$ $K_n \otimes K_n$: 4-ary!



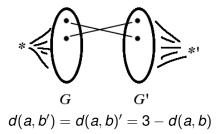
Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census taker Evidence

infinite diameter Finite primitive homogeneous graphs: C_5 , $K_3 \otimes K_3$ C_n : metrically homogeneous of diameter $\delta = \lfloor n/2 \rfloor$ Other finite: antipodal double covers of C_5 , $K_3 \otimes K_3$, I_n (diameter 3)



Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census taker

Evidence

infinite diameter Finite primitive homogeneous graphs: C_5 , $K_3 \otimes K_3$ C_n : metrically homogeneous of diameter $\delta = \lfloor n/2 \rfloor$ Other finite: antipodal double covers of C_5 , $K_3 \otimes K_3$, I_n (diameter 3) Double cover of C_5 :

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census taker

infinite

diameter

Finite primitive homogeneous graphs: C_5 , $K_3 \otimes K_3$ C_n : metrically homogeneous of diameter $\delta = \lfloor n/2 \rfloor$ Other finite: antipodal double covers of C_5 , $K_3 \otimes K_3$, I_n (diameter 3) Double cover of C_5 :

CLASSIFICATION

- Diameter \leq 2
- antipodal double cover of I_n , C_5 , $K_3 \otimes K_3$

• *C*_n

(General) History: Nešetřil to KPT

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census taker

infinite diameter Nešetřil: 1989 For graphs ...; 2005 Ramsey classes and homogeneous structures (Ramsey implies amalgamation) KPT 2005 Fraïssé limits, Ramsey theory, and topological dynamics ... Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence infinite diameter

History

2 Census takers

3 Evidence

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter Cameron 1998: A census of infinite distance-transitive graphs

Not even the countable metrically homogeneous graphs have been determined. 😒

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

diameter

Cameron 1998: A census of infinite distance-transitive graphs

Not even the countable metrically homogeneous graphs have been determined. 😒

CENSUS

- Locally Finite: known
- Diameter ≤ 2: known
- Γ^{δ} : Urysohn graph of diameter δ
- Bipartite Urysohn graph of diameter δ (all triangles have even perimeter)
- Henson variation (*K_n*-free)

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

nfinite diameter

- Locally Finite: known
- Diameter ≤ 2: known
- Γ^{δ} : Urysohn graph of diameter δ
- Bipartite Urysohn graph of diameter δ (all triangles have even perimeter)
- Henson variation (*K_n*-free)

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

nfinite diameter

- Locally Finite: known
- Diameter ≤ 2: known
- Γ^{δ} : Urysohn graph of diameter δ
- Bipartite Urysohn graph of diameter δ (all triangles have even perimeter)
- Henson variation (*K_n*-free)

This construction is similar, but not identical, to one due to Komjath et al. ..., who constructed a countable universal graph omitting odd cycles up to some fixed length. No doubt, further such variations are possible.

Interlude: Komjáth, Mekler, Pach

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

KMP 1988 Some universal graphs

History

Census takers

Theorem

Evidence

infinite diameter

- For any K, there is a universal countable graph among all graphs with no odd cycle of length less than 2K + 1.
- For any C, there is a universal countable graph among all graphs with no odd cycle of length greater than C.

My two censuses

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter

FIRST CENSUS (2009)

- Exceptions: finite, diameter < 2, or tree-like
- Generic type: constraints specified by
 - diameter δ
 - KMP parameters *K*, *C* (for triangles)
 - generalized Henson constraints (1, δ)-spaces, or antipodal Henson constraints (δ ≥ 4)

Abstract form: known exceptions + ($A = A_3 \cap A_H$)

My two censuses

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

nfinite diameter

FIRST CENSUS (2009)

- Exceptions: finite, diameter \leq 2, or tree-like
- Generic type: constraints specified by
 - diameter δ
 - KMP parameters *K*, *C* (for triangles)
 - generalized Henson constraints (1, δ)-spaces, or antipodal Henson constraints (δ ≥ 4)

Abstract form: known exceptions + ($A = A_3 \cap A_H$) SECOND CENSUS (2010)—AND CONJECTURE

- Exceptions: finite, diameter < 2, or tree-like
- Generic type: constraints specified by
 - diameter δ
 - KMP parameters K_1, K_2, C_0, C_1 (for triangles)
 - generalized Henson constraints (1, δ)-spaces, or antipodal Henson constraints (δ ≥ 4)

Abstract form: the same

Triangle constraints of type K_1, K_2, C_0, C_1

Gregory Cherlin

History

Census takers

Evidence

infinite diameter $p = \text{perimeter of } \Delta, \ |\Delta| = \textit{diameter},$ FORBIDDEN TRIANGLES $\frac{K_1 \qquad K_2 \qquad C}{p \text{ odd } p \leq 2K_1 \qquad p \geq 2(K_2 + |\Delta|) \qquad p \geq C_1} \\ p \text{ even } \qquad p \geq C_0$

Triangle constraints of type K_1, K_2, C_0, C_1

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter $p = perimeter of \Delta$, $|\Delta| = diameter$,

FORBIDDEN TRIANGLES

 $\begin{array}{c|c|c|c|c|c|c|} & K_1 & K_2 & C \\ \hline p \text{ odd } & p \leq 2K_1 & p \geq 2(K_2 + |\Delta|) & p \geq C_1 \\ p \text{ even } & & p \geq C_0 \end{array}$

Remark

Uniformly definable in Presburger arithmetic. Hence for any k, k-amalgamation is given by a quantifier-free condition on the numerical parameters.

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter

Theorem

A 3-constrained class of metric graphs associated with parameters (δ , K_1 , K_2 , C_0 , C_1) is an amalgamation class if and only if it has 5-amalgamation.

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence infinite

Theorem

A 3-constrained class of metric graphs associated with parameters (δ , K_1 , K_2 , C_0 , C_1) is an amalgamation class if and only if it has 5-amalgamation.

What are the numerical conditions? There are three possibilities.

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

nfinite diameter

Theorem

A 3-constrained class of metric graphs associated with parameters (δ , K_1 , K_2 , C_0 , C_1) is an amalgamation class if and only if it has 5-amalgamation.

What are the numerical conditions? There are three possibilities.

I. Bipartite: $K_1 = \infty$ $K_2 = 0, C_1 = 2\delta + 1$

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

nfinite diameter

Theorem

A 3-constrained class of metric graphs associated with parameters (δ , K_1 , K_2 , C_0 , C_1) is an amalgamation class if and only if it has 5-amalgamation.

What are the numerical conditions? There are three possibilities.

II. Low: $K_1 < \infty$, $C = \min(C_0, C_1) \le 2\delta + K_1$

•
$$C = 2K_1 + 2K_2 + 1;$$

•
$$K_1 + K_2 \geq \delta;$$

•
$$K_1 + 2K_2 \le 2\delta - 1$$

(IIA) C' = C + 1 or

(IIB) C' > C + 1, $K_1 = K_2$, and $3K_2 = 2\delta - 1$

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence infinite diameter Theorem

A 3-constrained class of metric graphs associated with parameters (δ , K_1 , K_2 , C_0 , C_1) is an amalgamation class if and only if it has 5-amalgamation.

What are the numerical conditions? There are three possibilities.

III. High $K_1 < \infty$, $C = \min(C_0, C_1) > 2\delta + K_1$

- $K_1 + 2K_2 \ge 2\delta 1$ and $3K_2 \ge 2\delta$;
- If $K_1 + 2K_2 = 2\delta 1$ then $C \ge 2\delta + K_1 + 2$;
- If C' > C + 1 then $C \ge 2\delta + K_2$.

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History Census take

Evidence

infinite diameter

History

Census takers

3 Evidence

Unconditional Evidence

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter

Definition (Generic type)

A metrically homogeneous graph has generic type iff

- Γ₁ is primitive; and
- For two vertices at distance 2, their common neighbors contain an infinite independent set.

Unconditional Evidence

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter

Definition (Generic type)

- Γ₁ is primitive; and
- For two vertices at distance 2, their common neighbors contain an infinite independent set.

Theorem (Unconditional Evidence)

- Non-generic type are classified
- All amalgamation classes defined by forbidden triangles and Henson constraints are of known type.
- (with Amato and Macpherson) The conjecture is valid in diameter 3.
- (Local analysis, generic type) If Γ_i has an edge then it is metrically homogeneous, connected, generic type usually.

Conditional evidence

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter

Theorem (Conditional Evidence)

- if Γ is bipartite and the half-graph BΓ is of known type, then Γ is known.
- If Γ has infinite diameter and all local subgraphs Γ_i which contain an edge are of known type, then Γ is of known type.

Conditional evidence

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter

Theorem (Conditional Evidence)

- if Γ is bipartite and the half-graph BΓ is of known type, then Γ is known.
- If Γ has infinite diameter and all local subgraphs Γ_i which contain an edge are of known type, then Γ is of known type.

The bipartite case reduces to the case in which $K_1 = 1$. So it would be interesting to treat this case fully and kill two birds with one stone.

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History Census tak

Evidence

infinite diameter

History

Census takers

3 Evidence

infinite diameter

Infinite diameter: Reduction

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter Now we discuss the proof of the infinite diameter reduction.

Theorem (Infinite Diameter)

If Γ has infinite diameter and all local subgraphs Γ_i which contain an edge are of known type, then Γ is of known type.

Infinite diameter: Reduction

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter Now we discuss the proof of the infinite diameter reduction.

Theorem (Infinite Diameter)

If Γ has infinite diameter and all local subgraphs Γ_i which contain an edge are of known type, then Γ is of known type.

Target: $\Gamma_{K_1,S}^{\infty}$! ($S = \{K_n\}$ or empty)

Infinite diameter: Reduction

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

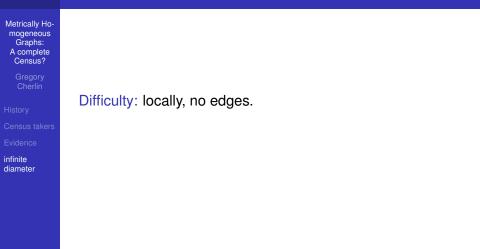
infinite diameter Now we discuss the proof of the infinite diameter reduction.

Theorem (Infinite Diameter)

If Γ has infinite diameter and all local subgraphs Γ_i which contain an edge are of known type, then Γ is of known type.

Target: $\Gamma_{K_1,S}^{\infty}$! ($S = \{K_n\}$ or empty)

- Reduce to the case $K_1 < \infty$
- Show that Γ_i contains an edge for i ≥ K₁ and apply local analysis to conclude.



Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takei

Evidence

infinite diameter Difficulty: locally, no edges. But we have a reduction from Γ to $B\Gamma$.

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History Census tał

Evidence

infinite diameter Difficulty: locally, no edges. But we have a reduction from Γ to $B\Gamma$.

Difficulty: diameter does not go down.

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History Census tak

zvidence

infinite diameter Difficulty: locally, no edges. But we have a reduction from Γ to $B\Gamma$.

Difficulty: diameter does not go down. But $K_1 = 1$ (or classified previously).

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History Census tak

infinite diameter Difficulty: locally, no edges. But we have a reduction from Γ to $B\Gamma$.

Difficulty: diameter does not go down. But $K_1 = 1$ (or classified previously).

O.K. THEN 🙂

Infinite diameter, $K_1 < \infty$

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter

Lemma (Embedding lemma)

If A omits triangles of small odd perimeter then A embeds into Γ .

Infinite diameter, $K_1 < \infty$

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Evidence

infinite diameter

Lemma (Embedding lemma)

If A omits triangles of small odd perimeter then A embeds into Γ .

Plan of attack.

- Γ_i contains an edge when $i \ge K_1$.
- When *i* is large, then the diameter of Γ_i and the values of K₂, C₀, C₁ are all large, and hence do not constrain A.
- Prove a local clique lemma (avoid Γ₁)
- For *i* ≥ max(*K*₁, 2), the value *K*₁ of the numerical parameter *K*₁ associated to Γ_{*i*} is equal to the original *K*₁.

A embeds into Γ_i for *i* large, hence into Γ .

The easy bits

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter $\begin{array}{l} --\text{the diameter } \tilde{\delta} \text{ of } \Gamma_i \text{ is } 2i. \\ -\tilde{C}_0, \tilde{C}_1 \geq 2\tilde{\delta} \\ -\tilde{K}_2 \geq \tilde{\delta}/2 \end{array}$

The easy bits

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter --the diameter $\tilde{\delta}$ of Γ_i is 2i. -- $\tilde{C}_0, \tilde{C}_1 \ge 2\tilde{\delta}$ -- $\tilde{K}_2 \ge \tilde{\delta}/2$

What is left?

For $i \geq \max(K_1, 2)$:

- Γ_i contains an edge; moreover
- Γ_i contains a triangle of type

 $(K_1, K_1, 1)$

The tricky bit

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter

Lemma (Main technical lemma)

For Γ of infinite diameter with $K_1 < \infty$, if all the local graphs Γ_i which contain an edge are of known type, then for $i \ge \max(K_1, 2)$ they all contain triangles of type $(K_1, K_1, 1)$.

The tricky bit

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter

Lemma (Main technical lemma)

For Γ of infinite diameter with $K_1 < \infty$, if all the local graphs Γ_i which contain an edge are of known type, then for $i \ge \max(K_1, 2)$ they all contain triangles of type $(K_1, K_1, 1)$.

- Base i = K (usually, K_1): explicit amalgamation
- Induction for i > K (look at $\Gamma_{i+1}(\Gamma_i)$).

Proof of the lemma $i = K_1 > 1$

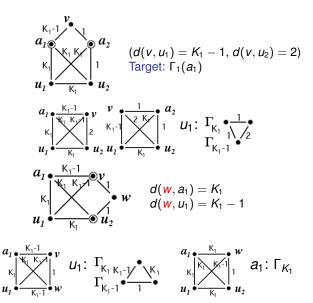
Cherlin

History

Census take

Evidence

infinite diameter



Blow-up

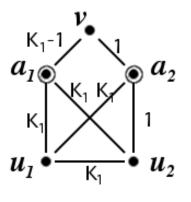
Gregory Cherlin

History

Census taker

Evidence

infinite diameter



 $d(v, u_1) = K_1 - 1, d(v, u_2) = 2$ Target: $\Gamma_1(a_1)$

Desiderata

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter

Theorem (Smith)

An imprimitive metrically homogeneous graph is bipartite or antipodal.

Desiderata

Metrically Homogeneous Graphs: A complete Census?

> Gregory Cherlin

History

Census takers

Evidence

infinite diameter

Theorem (Smith)

An imprimitive metrically homogeneous graph is bipartite or antipodal.

Problem (Unfinished business)

Give a conditional reduction of the antipodal case.