> Gregory Cherlin

Overview Details A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

Gregory Cherlin

January 4, 2016 MFO

> Gregory Cherlin

Overview Details

Overview

- Cameron's Homogeneous Permutations
- Structure of the Lattice of Ø-definable equivalence relations
- The current Census (after Braunfeld): problems and conjectures
- 2-constraint and 3-constraint
- Details
 - Genericity criterion
 - Representation Theorem: generalized ultrametric spaces
 - The role of distributivity
 - 2-constrained classes

> Gregory Cherlin

Overview

Details

2 Details

Homogeneous Permutations

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

CAMERON 2002: Homogeneous permutations.

Homogeneous Permutations

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

CAMERON 2002: Homogeneous permutations. What is a permutation?

 $(A; <_1, <_2)$

Isomorphism type is the *permutation pattern* in the usual sense.

Homogeneous Permutations

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

CAMERON 2002: Homogeneous permutations. What is a permutation?

(*A*; <₁, <₂)

Isomorphism type is the *permutation pattern* in the usual sense.

2-dimensional diagrams:

Classification of homogeneous permutations

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

- Trivial: |A| = 1
- Nontrivial primitive: <₂=<[±]₁ or <₁, <₂ independent (generic)
- Imprimitive: (Q²; <1, E1) lexicographic realized as (Q², <1, <2) in one of two ways.</p>

Overview

Details

Classification of homogeneous permutations

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

- Trivial: |A| = 1
- Nontrivial primitive: <₂=<[±]₁ or <₁, <₂ independent (generic)
- Imprimitive: (Q²; <1, E1) lexicographic realized as (Q², <1, <2) in one of two ways.</p>

Problem I. The n-dimensional case.

Remark. All homogeneous ordered graphs have an obvious source; to what extent does adding an order to a language lead to new examples?

Problem I is the base case!

Classification of homogeneous permutations

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

- Trivial: |A| = 1
- Nontrivial primitive: <₂=<[±]₁ or <₁, <₂ independent (generic)
- Imprimitive: (Q²; <1, E1) lexicographic realized as (Q², <1, <2) in one of two ways.</p>

Problem I. The n-dimensional case.

Remark. All homogeneous ordered graphs have an obvious source; to what extent does adding an order to a language lead to new examples?

Problem I is the base case!

Problem II. When does a countable universal permutation exist for a family determined by finitely many constraints? (More relevant to the study of permutation pattern classes, but we leave it aside.)

Higher dimensions: first census

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Trivial

- Nontrivial primitive: apart from restrictions $<_j = <_i^{\pm}$, no other variations known.
- Imprimitive: Lexicographic Q^k, up to k = 2ⁿ⁻¹ (with the corresponding chain of equivalence relations definable).

WHAT ELSE?

Higher dimensions: second census

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Sam Braunfeld's examples:

Theorem

Any finite distributive lattice can occur as the lattice of all Ø-definable equivalence relations in a finite dimensional permutation structure.

These examples may be constructed by enriching a homogeneous structure in the language of the specified equivalence relations by suitable linear orders.

Higher dimensions: second census

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Sam Braunfeld's examples:

Theorem

Any finite distributive lattice can occur as the lattice of all Ø-definable equivalence relations in a finite dimensional permutation structure.

These examples may be constructed by enriching a homogeneous structure in the language of the specified equivalence relations by suitable linear orders.

Problem

Normal subgroup structure of the automorphism groups; there is a metric element, as we shall see.

Example

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

 $(\mathbb{Q} \times \mathbb{Q}, E_1, E_2)$ (product, boolean lattice with two atoms). Extends to $(\mathbb{Q}^2, E_1, E_2, <_1^*, <_2^*)$ by generically ordering the quotient Qq^2/E_i . This allows a change of language to $(\mathbb{Q}^2, <_1, <_1', <_2, <_2')$.

Example

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

 $(\mathbb{Q} \times \mathbb{Q}, E_1, E_2)$ (product, boolean lattice with two atoms). Extends to $(\mathbb{Q}^2, E_1, E_2, <_1^*, <_2^*)$ by generically ordering the quotient Qq^2/E_i . This allows a change of language to $(\mathbb{Q}^2, <_1, <_1', <_2, <_2')$.

This is a difficult example to understand abstractly, and does not give a good model for the proof of the representation theorem (as far as I know).

New Census

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

- 3-constrained.
- Irriangle constraints do one of the following.
 - (a) Define equivalence relations.
 - (b) Impose convexity conditions on them.

Overview

Details

New Census

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

3-constrained.

- Iriangle constraints do one of the following.
 - (a) Define equivalence relations.
 - (b) Impose convexity conditions on them.
- $(1,2) \implies$ All primitive examples are 2-constrained \implies All primitive examples are known.

Overview

Details

New Census

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

3-constrained.

- Iriangle constraints do one of the following.
 - (a) Define equivalence relations.
 - (b) Impose convexity conditions on them.
- $(1,2) \implies$ All primitive examples are 2-constrained
- \implies All primitive examples are known.

Problem

Classify the 3-constrained examples explicitly!

Remark. The same problem arose in the case of metrically homogeneous graphs. In that case the solution is a family of examples which is uniformly definable in Presburger arithmetic.

There is no obvious parallel to look for in the present case.

> Gregory Cherlin

Overview

Details

2 Details

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Theorem (Cameron)

If all 3-types are realized by a homogeneous permutation then it is generic.

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Theorem (Cameron)

If all 3-*types are realized by a homogeneous permutation then it is generic.*

Conjecture

This holds for all homogeneous finite dimensional permutation structures.

What is known?

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Proposition

Suppose *k*, *n* satisfy the following condition.

$$\frac{k!}{(k-\ell)!} > n \cdot 2^{\ell} \qquad \qquad \ell = \lfloor k/2 \rfloor$$

Then any homogeneous n-dimensional permutation structure which realizes all (k - 1)-types is generic.

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Proposition

Suppose *k*, *n* satisfy the following condition.

$$\frac{k!}{(k-\ell)!} > n \cdot 2^{\ell} \qquad \qquad \ell = \lfloor k/2 \rfloor$$

Then any homogeneous n-dimensional permutation structure which realizes all (k - 1)-types is generic.

A less numerical version of the argument pushes k - 1 down to 3 when n = 3, confirming the conjecture in this case.

Genericity Criterion: Proof

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Proof.

We show that any structure of order k is the unique amalgam of two substructures of order k - 1. The numerical condition allows us to choose ℓ pairs of indices (i, j) such that for any one of the *n* orders, one of these pairs is non-adjacent with respect to that order.

Genericity Criterion: Proof

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Proof.

We show that any structure of order k is the unique amalgam of two substructures of order k - 1. The numerical condition allows us to choose ℓ pairs of indices (i, j) such that for any one of the *n* orders, one of these pairs is non-adjacent with respect to that order.

Then we can add $\ell - 1$ points so that every pair becomes non-adjacent with respect to every order, and view the extended structure on $k + \ell - 1$ points as the unique amalgam resulting from factors of order

 $k + (\ell - 1) - \ell = k - 1$

(remove one point from each of the ℓ pairs).

Realization of lattices

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Let Λ be a finite distributive lattices. (1) A Λ -metric space is Λ -valued with triangle inequality

$$d \leq d'' \lor d''$$

(Corresponds to: $E_{\lambda}(x,y) \iff d(x,y) \leq \lambda$.)

Realization of lattices

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Let Λ be a finite distributive lattices. (1) A Λ -metric space is Λ -valued with triangle inequality

$$d \leq d$$
" $\lor d$ "

(Corresponds to: $E_{\lambda}(x, y) \iff d(x, y) \le \lambda$.) (2) Canonical amalgamation:

$$d(a_1,a_2) = \bigwedge (d(a_1,x) \lor d(a_2,x))$$

Is this strong?—If 0 is meet irreducible.

Realization of lattices

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Let Λ be a finite distributive lattices. (1) A Λ -metric space is Λ -valued with triangle inequality

$$d \leq d$$
" $\lor d$ "

(Corresponds to: $E_{\lambda}(x, y) \iff d(x, y) \le \lambda$.) (2) Canonical amalgamation:

$$d(a_1,a_2) = \bigwedge (d(a_1,x) \lor d(a_2,x))$$

Is this strong?—If 0 is meet irreducible.

Lemma

If \mathbb{O} is meet irreducible, then the universal homogeneous Λ -metric space has an expansion by linear orders to a homogeneous structure in which all meet irreducible equivalence relations are convex with respect to at least one such.

Realization, continued

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

(3) If \mathbb{O} is meet irreducible, expand by linear orders making meet irreducibles convex, then replace by an equivalent language of linear orders.

Realization, continued

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

(3) If \mathbb{O} is meet irreducible, expand by linear orders making meet irreducibles convex, then replace by an equivalent language of linear orders.

If 0 is not meet irreducible, replace Λ by $\Lambda' = [0', \Lambda]$ and then factor out E_0

The last step is admittedly not very plausible: E_0 is not convex and it is hard to see what structure is inherited by the quotient, or why it should be homogeneous

Is distributivity necessary?

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Lemma

If Γ is a non-trivial homogeneous n-dimensional permutations structure, then any proper inclusion F < E in the lattice of \emptyset -definable equivalence relations has infinite index.

if Γ is a homogeneous structure in a language with equivalence relations satisfying this infinite index condition, then the lattice is distributive.

Is distributivity necessary?

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Lemma

If Γ is a non-trivial homogeneous n-dimensional permutations structure, then any proper inclusion F < E in the lattice of \emptyset -definable equivalence relations has infinite index.

if Γ is a homogeneous structure in a language with equivalence relations satisfying this infinite index condition, then the lattice is distributive.

This does not prove the necessity of distributivity: maybe the reduct to the language of equivalence relations is not homogeneous! But it makes it very plausible

Proof of distributivity

Gregory Cherlin

Overview

Details

Proof of distributivity

Compare the (x, u) to the path (x, y, u), noting that $d(x, y) \le e \land f$.

Proof of distributivity

Overview

Details

Compare the (x, u) to the path (x, y, u), noting that $d(x, y) \le e \land f$.

How do we get the factors? An analog of Neumann's Lemma

2-Constrained Classes

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Proposition

If Γ is 2-constrained then it is of standard primitive type: that is, we impose a set of conditions $<_j = \pm <_{j'}^{\pm}$ and nothing else.

(If 2-constraints determine the 3-constraints then similarly.)

2-Constrained Classes

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Proposition

If Γ is 2-constrained then it is of standard primitive type: that is, we impose a set of conditions $<_j = \pm <_{j'}^{\pm}$ and nothing else.

(If 2-constraints determine the 3-constraints then similarly.)

Reference

A Census of Homogeneous finite dimensional Permutation Structures (After Sam Braunfeld)

> Gregory Cherlin

Overview

Details

Sam Braunfeld, *Homogeneous n-dimensional permutation structures*, preprint, December 2015, 23 pp.