Vamos Girar de Novo

Gregory Cherlin

Metrically Ho mogeneous Graphs

Twisted automorphisms

Let's twist again, twistir time is here!

Splitting problems

Vamos Girar de Novo

Gregory Cherlin

24 July, 2017 All Kinds of Mathematics Remind me of You Faculdade de Ciências da Universidade de Lisboa

Vamos Girar de Novo

Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems

• Homogeneity

- Problem 1: Metrically Homogeneous Graphs
- Problem 2: Twisted automorphisms; splitting and the PC-property
- Twisted automorphisms of metrically homogeneous graphs
 - Classification
 - Splitting
 - The PC-property

Homogeneity (Klein 1872, Cantor 1895, Urysohn 1924, Fraïssé 1953)

Vamos Girar de Novo

> Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems

A metric geometry is homogeneous if every congruence on finite parts is induced by a global isometry.

A combinatorial structure is homogeneous if every isomorphism of finite parts is induced by a global automorphism.

Homogeneity (Klein 1872, Cantor 1895, Urysohn 1924, Fraïssé 1953)

Vamos Girar de Novo

> Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems A metric geometry is homogeneous if every congruence on finite parts is induced by a global isometry.

A combinatorial structure is homogeneous if every isomorphism of finite parts is induced by a global automorphism.

Examples

- 1. Some homogeneous graphs:
 - C_n for $n \leq 5$;
 - The random graph (Erdös-Rényi 1963)
- 2. Some metrically homogeneous graphs:
 - C_n for all n;
 - The random graph of diameter *n* (the integral Urysohn sphere).

Vamos Girar de Novo

> Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems

1 Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin' time is here!

Vamos Girar de Novo

> Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistir time is here!

Splitting problems

Problem (Moss/Cameron)

Classify the metrically homogeneous graphs

Vamos Girar de Novo

> Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems

Problem (Moss/Cameron)

Classify the metrically homogeneous graphs

Definition

A metrically homogeneous graph Γ is of generic type if

- The induced graph Γ₁ on a neighborhood is primitive; and
- The common neighbors of two points at distance 2 contain an infinite independent set.

Vamos Girar de Novo

> Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems

Problem (Moss/Cameron)

Classify the metrically homogeneous graphs

Theorem

The metrically homogeneous graphs of non-generic type are classified, and fall into the following categories.

- Diameter ≤ 2 (classified by Lachlan and Woodrow);
- Finite (classified by Cameron);
- Tree-like (Dugald Macpherson)

Vamos Girar de Novo

> Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems

Problem (Moss/Cameron)

Classify the metrically homogeneous graphs

Theorem

The metrically homogeneous graphs of non-generic type are classified, and fall into the following categories.

- Diameter ≤ 2 (classified by Lachlan and Woodrow);
- Finite (classified by Cameron);
- Tree-like (Dugald Macpherson)

Conjecture

The metrically homogeneous graphs of generic type are of the form $\Gamma^{\delta}_{K_1,K_2;C_0,C_1;S}$ where δ is the diameter and

Vamos Girar de Novo

> Gregory Cherlin

Metrically Ho mogeneous Graphs

Twisted automorphisms

Let's twist again, twistir time is here!

Splitting problems Metrically Homogeneous Graphs

2 Twisted automorphisms

Let's twist again, twistin' time is here!

Vamos Girar de Novo

Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems

Definition

 $\operatorname{Aut}^*(\Gamma)$ is the group of automorphisms up to a permutation of the language.

Vamos Girar de Novo

Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems

Definition

 $\operatorname{Aut}^*(\Gamma)$ is the group of automorphisms up to a permutation of the language.

Examples

An isomorphism of C_5 with its complement; an isomorphism of C_7 as a metric space with distances 1, 2, 3, to the twist by the cycle (1, 2, 3).

Vamos Girar de Novo

Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems

Definition

 $\operatorname{Aut}^*(\Gamma)$ is the group of automorphisms up to a permutation of the language.

Language $L_k = \Gamma^k / \operatorname{Aut}(\Gamma)$

Vamos Girar de Novo

Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems

Definition

 $\operatorname{Aut}^*(\Gamma)$ is the group of automorphisms up to a permutation of the language.

Language $L_k = \Gamma^k / \operatorname{Aut}(\Gamma)$

Remark (Cameron, Tarzi)

If Γ is homogeneous for the language L_k then the twisted automorphism group is

 $\textit{N}_{Sym(\Gamma)}(\operatorname{Aut}\Gamma)$

 $1 \to \operatorname{Aut}(\Gamma) \to \operatorname{Aut}^*(\Gamma) \to \operatorname{Aut}(L/\Gamma) \to 1$

Vamos Girar de Novo

> Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems

• What is $Aut(L/\Gamma)$?

- When does Aut* split over Aut?
- Are all automorphisms of Aut given by inner automorphisms of Aut*?

Definition

A permutation group (G, X) is strictly permutation-complete (PC^+) if $N_{Sym(X)}(G)$ induces Aut(G) on G.

Vamos Girar de Novo

> Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems • What is $Aut(L/\Gamma)$?

- When does Aut* split over Aut?
- Are all automorphisms of Aut given by inner automorphisms of Aut*?

Definition

A permutation group (G, X) is strictly permutation-complete (PC^+) if $N_{Sym(X)}(G)$ induces Aut(G) on G.

Example

Cameron and Tarzi considered this in the case of the complete graph with a random edge coloring by *m* colors, $\Gamma_{random}^{(m)}$.

Vamos Girar de Novo

> Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems • What is $Aut(L/\Gamma)$?

- When does Aut* split over Aut?
- Are all automorphisms of Aut given by inner automorphisms of Aut*?

Definition

A permutation group (G, X) is strictly permutation-complete (PC^+) if $N_{Sym(X)}(G)$ induces Aut(G) on G.

Example

Cameron and Tarzi considered this in the case of the complete graph with a random edge coloring by *m* colors, $\Gamma_{random}^{(m)}$.

Evidently, $\operatorname{Aut}(L/\Gamma_{\operatorname{random}}^{(m)})$ is $\operatorname{Sym}(m)$.

Vamos Girar de Novo

> Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems • What is $Aut(L/\Gamma)$?

- When does Aut* split over Aut?
- Are all automorphisms of Aut given by inner automorphisms of Aut*?

Definition

A permutation group (G, X) is strictly permutation-complete (PC^+) if $N_{Sym(X)}(G)$ induces Aut(G) on G.

Example

Cameron and Tarzi considered this in the case of the complete graph with a random edge coloring by *m* colors, $\Gamma_{random}^{(m)}$.

Evidently, $\operatorname{Aut}(L/\Gamma_{random}^{(m)})$ is $\operatorname{Sym}(m)$. Does Aut^* split, and is $\operatorname{Aut}^* PC^+$?

Cameron, Tarzi: Splitting

Vamos Girar de Novo

> Gregory Cherlin

Metrically Ho mogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems Data:

m = 1: Aut(L/Γ) = (1), so it splits.

m = 2: Aut $(L/\Gamma) = \mathbb{Z}/2\mathbb{Z}$ so we need a proper twisted automorphism of order 2—but then this would carry edges or non-edges (x, x^{α}) to themselves: non-split.

Cameron, Tarzi: Splitting

Vamos Girar de Novo

> Gregory Cherlin

Metrically Ho mogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems Data:

m = 1: Aut $(L/\Gamma) = (1)$, so it splits. m = 2: Aut $(L/\Gamma) = \mathbb{Z}/2\mathbb{Z}$ so we need a proper twisted

automorphism of order 2—but then this would carry edges or non-edges (x, x^{α}) to themselves: non-split.

Theorem (Cameron, Tarzi)

Aut^{*}($\Gamma_{random}^{(m)}$) splits over Aut(Γ) iff *m* is odd.

Non-splitting: as for m = 2, because there is an involution in $Aut(L/\Gamma)$ without fixed points. Splitting: more delicate.

PC^+

Vamos Girar de Novo

> Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems Aut(Γ) is a topological group (a closed subgroup of Sym(Γ) in fact) and the normalizer in Sym(Γ) acts continuously. So PC⁺ implies automatic continuity:

All automorphisms of $Aut(\Gamma)$ are continuous.

Definition

(G, X) is PC if $N_{\text{Sym}(X)}(G)$ induces all continuous automorphisms of *G*.

PC^+

Vamos Girar de Novo

> Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems Aut(Γ) is a topological group (a closed subgroup of Sym(Γ) in fact) and the normalizer in Sym(Γ) acts continuously. So PC⁺ implies automatic continuity:

All automorphisms of $Aut(\Gamma)$ are continuous.

Definition

(G, X) is PC if $N_{\text{Sym}(X)}(G)$ induces all continuous automorphisms of *G*.

Fact (Automatic Continuity)

Any homomorphism from $\operatorname{Aut}(\Gamma_{random}^{(m)})$ to a separable Polish group is continuous.

PC^+

Vamos Girar de Novo

> Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems Aut(Γ) is a topological group (a closed subgroup of Sym(Γ) in fact) and the normalizer in Sym(Γ) acts continuously. So PC⁺ implies automatic continuity:

All automorphisms of $\operatorname{Aut}(\Gamma)$ are continuous.

Definition

(G, X) is PC if $N_{\text{Sym}(X)}(G)$ induces all continuous automorphisms of *G*.

Fact (Automatic Continuity)

Any homomorphism from $\operatorname{Aut}(\Gamma_{random}^{(m)})$ to a separable Polish group is continuous.

Theorem (Cameron, Tarzi)

All $\Gamma_{random}^{(m)}$ are PC, hence PC⁺.

Vamos Girar de Novo

Let's twist again, twistin' time is here!

Let's twist again, twistin' time is here!

A context

Vamos Girar de Novo

Gregory Cherlin

Metrically Ho mogeneous Graphs

Twisted automorphisms

Let's twist again, twistin' time is here!

Splitting problems Γ: homogeneous for a binary language with symmetric relations (self-paired orbits)

Again:

- When does Aut* split?
- When is Aut PC?

Specifically: for the known metrically homogeneous graphs (mainly, of generic type)?

Twist of Metrically Homogeneous Graphs

Vamos Girar de Novo

> Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin' time is here!

Splitting problems

Theorem (Rebecca Coulson)

The possible twists of a metrically homogeneous graph of generic type are the permutations ρ , ρ^{-1} , τ_0 , τ_1 , where τ_{ϵ} is the involution $(1, [\delta + \epsilon] - 1)(3, [\delta + \epsilon] - 3) \cdots$, and

$$\rho(i) = \begin{cases} 2i & i \leq \delta/2\\ 2(\delta - i) + 1 & i > \delta/2 \end{cases}$$

The map ρ is a twisted isomorphism between

$${\sf \Gamma}^{\delta}_{{m C}=2\delta+2}$$
 and ${\sf \Gamma}^{\delta}_{{m K}_1=\delta}$

The τ_{ϵ} can act as twisted automorphisms, notably when

$$K_1 = \left\lfloor \frac{\delta + \epsilon}{2} \right\rfloor \quad K_2 = \left\lceil \frac{\delta + \epsilon}{2} \right\rceil \quad C = 2(\delta + \epsilon) + 1 \quad C' = C + 1$$

Splitting

Vamos Girar de Novo

Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin' time is here!

Splitting problems

Theorem

For any known metrically homogeneous graph of generic type and diameter δ which allows a twist by τ_{ϵ} the twisted automorphism group splits over the automorphism group iff $\delta + \epsilon \not\equiv 3 \pmod{4}$

 au_ϵ has lots of fixed points

Splitting

Vamos Girar de Novo

Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin' time is here!

Splitting problems

Theorem

For any known metrically homogeneous graph of generic type and diameter δ which allows a twist by τ_{ϵ} the twisted automorphism group splits over the automorphism group iff $\delta + \epsilon \not\equiv 3 \pmod{4}$

The splitting part may be stated more precisely.

Theorem

For any known metrically homogeneous graph of generic type and diameter δ which allows a twist by τ_{ϵ} , if $k, \delta + \epsilon - k$ are fixed points for τ_{ϵ} differing by at most 1, then there is a twisted automorphism α of order 2 affording τ_{ϵ} which satisfies

 $d(x, x^{\alpha}) \in \{k, \delta + \epsilon - k\}$ for all x.

The PC-property

Vamos Girar de Novo

Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin' time is here!

Splitting problems

Obstruction: Central automorphisms

Theorem

Let Γ be a metrically homogeneous graph and $\alpha \in \operatorname{Aut}^*(\Gamma)$ a non-trivially twisted automorphism α of Γ inducing a non-trivial central automorphism of Γ . Then Γ is of antipodal type, bipartite, and of even diameter; if Γ is not an n-cycle, then α is $(1, \pi)$ or $(\pi, 1)$ with π the antipodal map.

But in the primitive case the situation is very similar to $\Gamma_{random}^{(m)}$.

The primitive case

Vamos Girar de Novo

Gregory Cherlin

Metrically Ho mogeneous Graphs

Twisted automorphisms

Let's twist again, twistin' time is here!

Splitting problems

Theorem(ish)

Let Γ be a known primitive metrically homogeneous graph of generic type. Then Aut^{*}(Γ) induces the full automorphism group of Aut(Γ)

The primitive case

Vamos Girar de Novo

Gregory Cherlin

Metrically Ho mogeneous Graphs

Twisted automorphisms

Let's twist again, twistin' time is here!

Splitting problems

Theorem(ish)

Let Γ be a known primitive metrically homogeneous graph of generic type. Then Aut^{*}(Γ) induces the full automorphism group of Aut(Γ)

Ingredients as in Cameron and Tarzi—but we haven't actually said what they were ...

Ingredients

Vamos Girar de Novo

- Gregory Cherlin
- Metrically Homogeneous Graphs
- Twisted automorphisms
- Let's twist again, twistin' time is here!
- Splitting problems

- Identify open subgroups (R. Coulson; Aranda, Bradley-Williams, Hubička, Karamanlis, Kompatscher, Konečný, Pawliuk 2017);
- Identify setwise stabilizers (Cameron 2005)
- Identify vertex stabilizers (Method of Cameron/Tarzi 2007)

or in terms of methodology

- Finiteness of forbidden partial substructures;
- Strong primitivity;
- Double cosets of G_{{A}} count isomorphism types of pairs (A₁, A₂) with A_i ≃ A; for vertex stabilizers there are δ + 1 such.

And just one more thing

Vamos Girar de Novo

> Gregory Cherlin

Metrically Ho mogeneous Graphs

Twisted automorphisms

Let's twist again, twistin' time is here!

Splitting problems

Problem (Cameron 2002)

Classify the homogeneous structures for a language with finitely many linear relations.

And just one more thing

Vamos Girar de Novo

> Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems

Problem (Cameron 2002)

Classify the homogeneous structures for a language with finitely many linear relations.

Conjecture (Sam Braunfeld, Rutgers, 2017)

Built generically from "sub-quotient orders," over a generalized ultrametric space with values in a distributive lattice. In particular there are only finitely many for a specified finite language, and they have the Ramsey property.

(Also, the isometry group of the g.u.m. has metrizable minimal flow when the lattice is distributive.)

Theorem(ish)

True for 3 orders.

Vamos Girar de Novo

> Gregory Cherlin

Metrically Ho mogeneous Graphs

Twisted automorphisms

Let's twist again, twistir time is here!

Splitting problems

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin' time is here!

Problems

Vamos Girar de Novo

Gregory Cherlin

Metrically Homogeneous Graphs

Twisted automorphisms

Let's twist again, twistin time is here!

Splitting problems

The splitting problem for symmetric binary languages.

Problems

- When do involutions in Aut(L/Γ) lift to involutions in Aut*(Γ)?
- If all involutions in Aut(L/Γ) lift to involutions, does Aut* split?