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Homogeneity (Klein 1872, Cantor 1895,
Urysohn 1924, Fraı̈ssé 1953)

A metric geometry is homogeneous if every congruence on
finite parts is induced by a global isometry.

A combinatorial structure is homogeneous if every
isomorphism of finite parts is induced by a global
automorphism.

Examples

1. Some homogeneous graphs:
Cn for n ≤ 5;
The random graph (Erdös-Rényi 1963)

2. Some metrically homogeneous graphs:
Cn for all n;
The random graph of diameter n (the integral Urysohn
sphere).
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Metrically homogeneous graphs

Problem (Moss/Cameron)
Classify the metrically homogeneous graphs

Theorem
The metrically homogeneous graphs of non-generic type
are classified, and fall into the following categories.

Diameter ≤ 2 (classified by Lachlan and Woodrow);
Finite (classified by Cameron);
Tree-like (Dugald Macpherson)

Conjecture
The metrically homogeneous graphs of generic type are of
the form ΓδK1,K2;C0,C1;S where δ is the diameter and . . . .
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Problem (Moss/Cameron)
Classify the metrically homogeneous graphs

Definition
A metrically homogeneous graph Γ is of generic type if

The induced graph Γ1 on a neighborhood is primitive;
and
The common neighbors of two points at distance 2
contain an infinite independent set.
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Twisted automorphisms (Cameron and Tarzi,
2007)

Definition
Aut∗(Γ) is the group of automorphisms up to a permutation
of the language.

Language Lk = Γk/Aut(Γ)

Remark (Cameron,Tarzi)
If Γ is homogeneous for the language Lk then the twisted
automorphism group is

NSym(Γ)(Aut Γ)

1→ Aut(Γ)→ Aut∗(Γ)→ Aut(L/Γ)→ 1
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Twisted automorphisms (Cameron and Tarzi,
2007)

Definition
Aut∗(Γ) is the group of automorphisms up to a permutation
of the language.

Examples
An isomorphism of C5 with its complement; an isomorphism
of C7 as a metric space with distances 1,2,3, to the twist by
the cycle (1,2,3).

Language Lk = Γk/Aut(Γ)

Remark (Cameron,Tarzi)
If Γ is homogeneous for the language Lk then the twisted
automorphism group is

NSym(Γ)(Aut Γ)

1→ Aut(Γ)→ Aut∗(Γ)→ Aut(L/Γ)→ 1
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Natural Questions

1 What is Aut(L/Γ)?
2 When does Aut∗ split over Aut?
3 Are all automorphisms of Aut given by inner

automorphisms of Aut∗?

Definition
A permutation group (G,X ) is strictly permutation-complete
(PC+) if NSym(X)(G) induces Aut(G) on G.

Example
Cameron and Tarzi considered this in the case of the
complete graph with a random edge coloring by m colors,
Γ

(m)
random.

Evidently, Aut(L/Γ
(m)
random) is Sym(m).

Does Aut∗ split, and is Aut∗ PC+?
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Cameron, Tarzi: Splitting

Data:
m = 1: Aut(L/Γ) = (1), so it splits.
m = 2: Aut(L/Γ) = Z/2Z so we need a proper twisted
automorphism of order 2—but then this would carry edges
or non-edges (x , xα) to themselves: non-split.

Theorem (Cameron, Tarzi)

Aut∗(Γ
(m)
random) splits over Aut(Γ) iff m is odd.

Non-splitting: as for m = 2, because there is an involution in
Aut(L/Γ) without fixed points.
Splitting: more delicate.



Vamos Girar
de Novo

Gregory
Cherlin

Metrically Ho-
mogeneous
Graphs

Twisted auto-
morphisms

Let’s twist
again, twistin’
time is here!

Splitting
problems

Cameron, Tarzi: Splitting

Data:
m = 1: Aut(L/Γ) = (1), so it splits.
m = 2: Aut(L/Γ) = Z/2Z so we need a proper twisted
automorphism of order 2—but then this would carry edges
or non-edges (x , xα) to themselves: non-split.

Theorem (Cameron, Tarzi)

Aut∗(Γ
(m)
random) splits over Aut(Γ) iff m is odd.

Non-splitting: as for m = 2, because there is an involution in
Aut(L/Γ) without fixed points.
Splitting: more delicate.



Vamos Girar
de Novo

Gregory
Cherlin

Metrically Ho-
mogeneous
Graphs

Twisted auto-
morphisms

Let’s twist
again, twistin’
time is here!

Splitting
problems

PC+

Aut(Γ) is a topological group (a closed subgroup of Sym(Γ)
in fact) and the normalizer in Sym(Γ) acts continuously. So
PC+ implies automatic continuity:

All automorphisms of Aut(Γ) are continuous.

Definition
(G,X ) is PC if NSym(X)(G) induces all continuous
automorphisms of G.

Fact (Automatic Continuity)

Any homomorphism from Aut(Γ
(m)
random) to a separable Polish

group is continuous.

Theorem (Cameron, Tarzi)

All Γ
(m)
random are PC, hence PC+.
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A context

Γ: homogeneous for a binary language with symmetric
relations (self-paired orbits)

Again:
When does Aut∗ split?
When is Aut PC?

Specifically: for the known metrically homogeneous graphs
(mainly, of generic type)?
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Twist of Metrically Homogeneous Graphs

Theorem (Rebecca Coulson)
The possible twists of a metrically homogeneous graph of
generic type are the permutations ρ, ρ−1, τ0, τ1, where τε is
the involution (1, [δ + ε]− 1)(3, [δ + ε]− 3) · · · , and

ρ(i) =

{
2i i ≤ δ/2
2(δ − i) + 1 i > δ/2

The map ρ is a twisted isomorphism between

ΓδC=2δ+2 and ΓδK1=δ

The τε can act as twisted automorphisms, notably when

K1 =

⌊
δ + ε

2

⌋
K2 =

⌈
δ + ε

2

⌉
C = 2(δ + ε) + 1 C′ = C + 1
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Splitting

Theorem
For any known metrically homogeneous graph of generic
type and diameter δ which allows a twist by τε the twisted
automorphism group splits over the automorphism group iff

δ + ε 6≡ 3 (mod 4)

� τε has lots of fixed points

The splitting part may be stated more precisely.

Theorem
For any known metrically homogeneous graph of generic
type and diameter δ which allows a twist by τε, if k , δ + ε− k
are fixed points for τε differing by at most 1, then there is a
twisted automorphism α of order 2 affording τε which
satisfies

d(x , xα) ∈ {k , δ + ε− k} for all x.
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The PC-property

Obstruction: Central automorphisms

Theorem
Let Γ be a metrically homogeneous graph and α ∈ Aut∗(Γ) a
non-trivially twisted automorphism α of Γ inducing a
non-trivial central automorphism of Γ. Then Γ is of antipodal
type, bipartite, and of even diameter; if Γ is not an n-cycle,
then α is (1, π) or (π,1) with π the antipodal map.

But in the primitive case the situation is very similar to
Γ

(m)
random.
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The primitive case

Theorem(ish)
Let Γ be a known primitive metrically homogeneous graph of
generic type.
Then Aut∗(Γ) induces the full automorphism group of Aut(Γ)

Ingredients as in Cameron and Tarzi—but we haven’t
actually said what they were . . .
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Ingredients

Identify open subgroups (R. Coulson; Aranda,
Bradley-Williams, Hubička, Karamanlis, Kompatscher,
Konečný, Pawliuk 2017) ;
Identify setwise stabilizers (Cameron 2005)
Identify vertex stabilizers (Method of Cameron/Tarzi
2007)

or in terms of methodology
Finiteness of forbidden partial substructures;
Strong primitivity;
Double cosets of G{A} count isomorphism types of
pairs (A1,A2) with Ai ' A; for vertex stabilizers there
are δ + 1 such.
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And just one more thing

Problem (Cameron 2002)
Classify the homogeneous structures for a language with
finitely many linear relations.

Conjecture (Sam Braunfeld, Rutgers, 2017)
Built generically from “sub-quotient orders,” over a
generalized ultrametric space with values in a distributive
lattice. In particular there are only finitely many for a
specified finite language, and they have the Ramsey
property.

(Also, the isometry group of the g.u.m. has metrizable
minimal flow when the lattice is distributive.)

Theorem(ish)
True for 3 orders.
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Problems

The splitting problem for symmetric binary languages.

Problems

When do involutions in Aut(L/Γ) lift to involutions in
Aut∗(Γ)?
If all involutions in Aut(L/Γ) lift to involutions, does Aut∗

split?
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