Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Twists and Twistability

Gregory Cherlin

University of Manchester June 12, 2017, 4 P.M.

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

- Twisted isomorphism: examples
- The twisted automorphism group
 - The random graph; descriptive set theory
- The *m*-random colored graph (Cameron/Tarzi)
- Metrically homogeneous graphs (Rebecca Coulson)
- Some topological dynamics
 - Generalized ultrametric spaces (Sam Braunfeld)

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The randon graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Twisted isomorphisms and the twisted automorphism group

I he random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

- Some descriptive set theory
- Imprimitive Structures

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Isomorphism up to language \simeq^*

Example

Graph and graph complement.

C_5 : self-dual Random Graph \mathcal{R} : self-dual

Generic triangle-free \mathcal{H}_3 (Henson), \mathcal{H}_3^c is generic I_3 -free.

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Isomorphism up to language \simeq^*

Example

Graph and graph complement.

 C_5 : self-dual

Random Graph R: self-dual

Generic triangle-free \mathcal{H}_3 (Henson), \mathcal{H}_3^c is generic I_3 -free.

 $C_6 \simeq^*$ Triangular prism

(bad example)

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Example

Graphs as metric spaces

 C_5 , \mathcal{R} , \mathcal{H}_3 , as before (diameter 2) C_6 , C_7 : diameter 3

Twists and Twistability

Twisted isomorphisms and the twisted automorphism group

Example

Graphs as metric spaces

 $C_5, \mathcal{R}, \mathcal{H}_3$, as before (diameter 2)

123 or 123 Twists: $\mathbb{Z}/3\mathbb{Z}$ (self-triality)

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Auto morphisms

Some descriptive set theory

Imprimitive

Example

Graphs as metric spaces

 C_5 , \mathcal{R} , \mathcal{H}_3 , as before (diameter 2) C_6 , C_7 , *lco*: diameter 3

Ico:

1 2 3 or 1 2 3 Twists: $\mathbb{Z}/3\mathbb{Z}$ (self-triality)

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Auto morphisms

Some descriptive set theory

Imprimitive

Example

Graphs as metric spaces

 C_5 , \mathcal{R} , \mathcal{H}_3 , as before (diameter 2) C_6 , C_7 , *lco*: diameter 3

1 2 3 or 1 2 3 Twists: $\mathbb{Z}/3\mathbb{Z}$ (self-triality)

Which language?

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Canonical Language $G = \operatorname{Aut}(\Gamma)$ Relations R_O for *G*-orbits *O* $\operatorname{Aut}(\Gamma_{can}) = \operatorname{Aut}(\Gamma)$ *in fact:* If $G \leq \operatorname{Sym}(\Gamma)$ is closed then $\operatorname{Aut}(\Gamma_{can}) = G$.

$$\operatorname{Aut}^*(\Gamma_{\operatorname{can}}) = N_{\operatorname{Sym}(\Gamma)}(\operatorname{Aut}(\Gamma))$$

Proof.

$$egin{aligned} \mathcal{O}^h &= (\mathcal{O}^h)^G \ \mathcal{O} &= \mathcal{O}^{hGh^{-1}} \ \mathcal{G}^h &\leq \overline{G} = G. \end{aligned}$$

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

The canonical language is infinite. We can manage with less.

Definition

 Γ is homogeneous for *L* if Aut(Γ)-orbits on Γ^n coincide with *L*-isomorphism types.

Twists and Twistability

> Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

The canonical language is infinite. We can manage with less.

Definition

 Γ is homogeneous for *L* if Aut(Γ)-orbits on Γ^n coincide with *L*-isomorphism types.

Example

 C_n is homogeneous in the metric language, and homogeneous as a graph if the diameter is at most 2 $(n \le 5)$.

Twists and Twistability

> Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

The canonical language is infinite. We can manage with less.

Definition

 Γ is homogeneous for *L* if Aut(Γ)-orbits on Γ^n coincide with *L*-isomorphism types.

Example

 C_5 is a graph, but C_6 is a metric space.

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

The canonical language is infinite. We can manage with less.

Definition

 Γ is homogeneous for *L* if Aut(Γ)-orbits on Γ^n coincide with *L*-isomorphism types.

Example

 C_5 is a graph, but C_6 is a metric space.

 L_k : restriction to k variables. Use the least k that works (for us, k = 2).

If Γ is homogeneous for a finite language, and we use a suitable L_k , we get the same twisted automorphisms.

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Twisted isomorphisms and the twisted automorphism group

2 The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

- Some descriptive set theory
- **Imprimitive Structures**

Two problems (Cameron, Tarzi)

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

- When does Aut* split over Aut?
- When does Aut* induce Aut(Aut)?

\mathcal{R} (Cameron, Tarzi)

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Aut(L/\mathcal{R}) = Aut*(\mathcal{R})/Aut(\mathcal{R}) $\simeq \mathbb{Z}/2\mathbb{Z}$ (the group of twists). Non-split: If $\alpha^2 = 1$ then $d(x, x^{\alpha})$ is a fixed point for α , so $\alpha = 1$.

\mathcal{R} (Cameron, Tarzi)

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Aut $(L/\mathcal{R}) = \operatorname{Aut}^*(\mathcal{R})/\operatorname{Aut}(\mathcal{R}) \simeq \mathbb{Z}/2\mathbb{Z}$ (the group of twists). Non-split: If $\alpha^2 = 1$ then $d(x, x^{\alpha})$ is a fixed point for α , so $\alpha = 1$. Aut $^*(\mathcal{R}) = \operatorname{Aut}(\mathcal{R})^{\pm}$ is the full automorphism group of

Aut(\mathcal{R}). Less clear.

\mathcal{R} (Cameron, Tarzi)

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Aut $(L/\mathcal{R}) = \operatorname{Aut}^*(\mathcal{R}) / \operatorname{Aut}(\mathcal{R}) \simeq \mathbb{Z}/2\mathbb{Z}$ (the group of twists). Non-split: If $\alpha^2 = 1$ then $d(x, x^{\alpha})$ is a fixed point for α , so $\alpha = 1$. Aut $^*(\mathcal{R}) = \operatorname{Aut}(\mathcal{R})^{\pm}$ is the full automorphism group of Aut (\mathcal{R}) . Less clear.

Observation

 $\operatorname{Aut}^*(\Gamma)$ induces continuous automorphisms of $\operatorname{Aut}(\Gamma)$.

Theorem (Automatic Continuity)

Any homomorphism from $Aut(\mathcal{R})$ to a separable topological group is continuous.

Descriptive Set Theory+Combinatorics

Ample Generics and the Extension Property

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Definition

A conjugacy class in *G* is generic if it is dense G_{δ} . *G* has ample generics if G^n has a generic conjugacy class for each *n*.

G has the small index property if every subgroup of countable index is open.

Ample Generics and the Extension Property

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Definition

A conjugacy class in *G* is generic if it is dense G_{δ} . *G* has ample generics if G^n has a generic conjugacy class for each *n*.

G has the small index property if every subgroup of countable index is open.

Combinatorics \implies Ample generics

 \implies S.I.P. \implies Automatic Continuity

Strong Primitivity

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Definition

Γ is strongly primitive if for all finite $A \subseteq Γ$ and all orbits Ω over A in $Γ \setminus A$,

 Ω is infinite and primitive over A

Cf. *extremely primitive* finite permutation groups (Mann, Burness, Praeger, Seress)

Strong Primitivity

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Definition

Γ is strongly primitive if for all finite $A \subseteq Γ$ and all orbits Ω over A in $Γ \setminus A$,

 Ω is infinite and primitive over A

Example

 \mathcal{R}

Proposition (Cameron)

If Γ is strongly primitive then any proper open subgroup of $Aut(\Gamma)$ is contained in the stabilizer of a non-empty finite set.

Corollary

 $Aut(Aut(\mathcal{R}))$ preserves the family of setwise stabilizers of finite subsets.

 $\operatorname{Aut}(\operatorname{Aut}(\mathcal{R})) = \operatorname{Aut}^*(\mathcal{R})$

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Claim

Aut(Aut(\mathcal{R})) preserves the family of vertex stabilizers.

 $\operatorname{Aut}(\operatorname{Aut}(\mathcal{R})) = \operatorname{Aut}^*(\mathcal{R})$

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Claim

 $Aut(Aut(\mathcal{R}))$ preserves the family of vertex stabilizers.

Count double cosets:

 $H = (\operatorname{Aut} \Gamma)_{\{A\}}.$

Double cosets parametrize isomorphism types of pairs

$$(A_1, A_2)$$
 $A_1 \simeq A_2 \simeq A$

 $\operatorname{Aut}(\operatorname{Aut}(\mathcal{R})) = \operatorname{Aut}^*(\mathcal{R})$

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Auto morphisms

Some descriptive set theory

Imprimitive

Claim

Aut(Aut(\mathcal{R})) preserves the family of vertex stabilizers.

Count double cosets:

 $H = (\operatorname{Aut} \Gamma)_{\{A\}}.$

Double cosets parametrize isomorphism types of pairs

$$(A_1, A_2)$$
 $A_1 \simeq A_2 \simeq A$

The number of isomorphism types is

$$\geq |A|^2 + |A| + 1 \quad (|A_1 \cap A_2|, |E \cap (A_1 \times A_2)| : |A| + (|A|^2 + 1)) \\ = 3 \text{ if } |A| = 1$$

Vertex stabilizers minimize this number.

 $\operatorname{Aut}(\operatorname{Aut}(\mathcal{R})) = \operatorname{Aut}^*(\mathcal{R})$

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Combinatorics, descriptive set theory: automatic continuity Strong primitivity: Recognize stabilizers of finite sets Double cosets, Type counting: Recognize vertex stabilizers

 $\operatorname{Aut}(\operatorname{Aut}(\mathcal{R})) = \operatorname{Aut}^*(\mathcal{R}).$

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Twisted isomorphisms and the twisted automorphism group

The random graph

3 The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

- Some descriptive set theory
- Imprimitive Structures

The *m*-random graph \mathcal{R}_m

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Use an *m*-sided "coin" (die). $L = \{1, ..., m\}$. \mathcal{R}_m is *L*-homogeneous. Aut $(L/\mathcal{R}_m) = \text{Sym}(m)$ $\mathcal{R} = \mathcal{R}_2$.

Questions

Splitting? Induced automorphisms?

Splitting \mathcal{R}_m

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Theorem (Cameron, Tarzi)

Aut* splits over Aut iff m is odd.

The even case is illustrated by \mathcal{R} : an involution without fixed points cannot lift to a twisted automorphism of order 2.

Splitting \mathcal{R}_m

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Theorem (Cameron, Tarzi)

Aut* splits over Aut iff m is odd.

For *m* odd, the splitting argument depends on the robustness of the isomorphism type of \mathcal{R}_m .

Example

Modify the construction of \mathcal{R}_m as follows:

- Allow any non-zero color probabilities p₁,..., p_m which sum to 1;
- Fix an infinite set of vertices, and only use the die when the edge contains one of the specified vertices; otherwise, use any method you like (including waiting till after all random choices are made)

Then with probability 1 the resulting structure is still \mathcal{R}_m .

Splitting \mathcal{R}_m . *m* odd

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Lemma (Cameron, Tarzi)

There is a finite m-edge colored graph with a regular action of Sym(m) via correctly twisted automorphisms iff m is odd.

This comes down to choosing the color $\chi(\sigma)$ of $(1, \sigma)$ for $\sigma \neq 1$ subject to $\chi(\sigma)^{\sigma^{-1}} = \chi(\sigma^{-1})$, at which point one sees the relevance of the parity condition.

Splitting \mathcal{R}_m . *m* odd

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Lemma (Cameron, Tarzi)

There is a finite m-edge colored graph with a regular action of Sym(m) via correctly twisted automorphisms iff m is odd.

Given a finite *m*-edge colored graph *A* as above, view $A \times \mathbb{N}$ as the disjoint union of copies of *A*, with Sym(m) acting naturally (fixing \mathbb{N}).

Splitting \mathcal{R}_m . *m* odd

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Lemma (Cameron, Tarzi)

There is a finite m-edge colored graph with a regular action of Sym(m) via correctly twisted automorphisms iff m is odd.

Given a finite *m*-edge colored graph *A* as above, view $A \times \mathbb{N}$ as the disjoint union of copies of *A*, with Sym(m) acting naturally (fixing \mathbb{N}).

Extend to a complete *m*-edge colored graph randomly on edges of type [(a, i), (1, j)] with i < j, and use the action of Sym(m) to complete the definition. The result is \mathcal{R}_m with the desired action of Sym(m).

The action of Aut* on Aut

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Everything done for \mathcal{R} goes over to \mathcal{R}_m .

- Ample generics (Hrushovski, Herwig)
- Strong primitiivity
- Counting types of pairs (Cameron–Tarzi).

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

4

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive Structures

The known metrically homogeneous graphs

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Fact (Cameron, Macpherson)

The locally finite metrically homogeneous graphs of diameter at least 3 are the following.

- C_n for $n \ge 6$.
- The icosahedral graph
- The Johnson graph J(6,3): 3-tuples, edges when the intersection has order 2.
- Bipartite complement of perfect matching
- Macpherson's tree-like T_{m,n} of infinite diameter, where m, n < ∞.

One can also have $T_{m,n}$ with *m* or *n* infinite (still metrically homogeneous).

The known metrically homogeneous graphs

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Fact (Cameron, Macpherson)

The locally finite metrically homogeneous graphs of diameter at least 3 are the following.

- C_n for $n \ge 6$.
- The icosahedral graph
- The Johnson graph J(6,3): 3-tuples, edges when the intersection has order 2.
- Bipartite complement of perfect matching
- Macpherson's tree-like T_{m,n} of infinite diameter, where m, n < ∞.

One can also have $T_{m,n}$ with *m* or *n* infinite (still metrically homogeneous).

Anything not mentioned above is said to be of generic type.

Metrically homogeneous graphs of generic type

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

The random graph generalizes to the *generic* K_n -free graph (Henson). Metrically homogeneous analogs include the following.

Definition

 $\Gamma_{K,C}^{\delta}$ is the generic metrically homogeneous graph of diameter δ with no metric triangle of perimeter greater than or equal to *C*, and no metric triangle of odd perimeter less than 2K + 1 (approximately bipartite).

Metrically homogeneous graphs of generic type

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Auto morphisms

Some descriptive set theory

Imprimitive

The random graph generalizes to the *generic* K_n -free graph (Henson). Metrically homogeneous analogs include the following.

Definition

 $\Gamma_{K,C}^{\delta}$ is the generic metrically homogeneous graph of diameter δ with no metric triangle of perimeter greater than or equal to *C*, and no metric triangle of odd perimeter less than 2K + 1 (approximately bipartite).

A modest generalization of this definition produces all known metrically homogeneous graphs of generic type (replacing K, C by K_1, K_2, C_0, C_1 and some clique-like constraints) ...

Classification conjecture

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Conjecture

The metrically homogeneous graphs of generic type are the graphs

 $\Gamma^{\delta}_{K_1,K_2,C_0,C_1,\mathcal{S}}$

The diameter 2 classification is classical (Lachlan/Woodrow, 1980).

Classification conjecture

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Conjecture

The metrically homogeneous graphs of generic type are the graphs

 $\Gamma^{\delta}_{K_1,K_2,C_0,C_1,\mathcal{S}}$

Diameter 3 has been done, joint with Amato and Macpherson (submitted).

Classification conjecture

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Auto morphisms

Some descriptive set theory

Imprimitive

Conjecture

The metrically homogeneous graphs of generic type are the graphs

 $\Gamma^{\delta}_{K_1,K_2,C_0,C_1,\mathcal{S}}$

Diameter 3 has been done, joint with Amato and Macpherson (submitted).

In the diameter 3 case we took advantage of the twisted isomorphism

$$\Gamma^3_{C=8} \simeq^* \Gamma^3_{K=3}$$

afforded by the cycle (123).

$$(3,3,2)\mapsto (1,1,3)\mapsto (2,2,1)$$

 $(C=8)$ $(K=3)$

Metric twists

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Theorem (R. Coulson)

The possible twists of a metrically homogeneous graph of generic type are the permutations ρ , ρ^{-1} , τ_0 , τ_1 , where τ_{ϵ} is the transposition $(1, [\delta + \epsilon] - 1)(3, [\delta + \epsilon] - 3) \cdots$, and

$$\rho(i) = \begin{cases} 2i & i \leq \delta/2\\ 2(\delta - i) + 1 & i > \delta/2 \end{cases}$$

The map ρ is a twisted isomorphism between

$${\sf \Gamma}^{\delta}_{{m C}=2\delta+2}$$
 and ${\sf \Gamma}^{\delta}_{{m K}_1=\delta}$

The τ_{ϵ} can act as twisted automorphisms, notably when

$$K_1 = \left\lfloor \frac{\delta + \epsilon}{2} \right\rfloor \quad K_2 = \left\lceil \frac{\delta + \epsilon}{2} \right\rceil \quad C = 2\delta + 1 \quad C' = C + 1$$

Splitting

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Theorem

For any known metrically homogeneous graph of generic type and diameter δ which allows a twist by τ_{ϵ} the twisted automorphism group splits over the automorphism group iff $\delta + \epsilon \not\equiv 3 \pmod{4}$

Splitting

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Theorem

For any known metrically homogeneous graph of generic type and diameter δ which allows a twist by τ_{ϵ} the twisted automorphism group splits over the automorphism group iff $\delta + \epsilon \not\equiv 3 \pmod{4}$

The splitting part may be stated more precisely.

Theorem

For any known metrically homogeneous graph of generic type and diameter δ which allows a twist by τ_{ϵ} , if $k, \delta + \epsilon - k$ are fixed points for τ_{ϵ} differing by at most 1, then there is a twisted automorphism α of order 2 affording τ_{ϵ} which satisfies

 $d(x, x^{\alpha}) \in \{k, \delta + \epsilon - k\}$ for all x.

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

5 Induced Automorphisms

Some descriptive set theory

Imprimitive Structures

Central automorphisms

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Definition

A central automorphism of a group G has the form

$$g^{lpha} = g \cdot \zeta(g)$$
 $\zeta: G
ightarrow Z(G)$

Examples

Let Γ be metrically homogeneous, bipartite and *antipodal* (i.e., the relation $d(x, y) = \delta$ defines a bijection). The antipodal map π is in the center of Aut(Γ), and the setwise stabilizer of the two parts is a subgroup of index 2, so there is a central automorphism.

E.g. bipartite complement of perfect matching.

Central automorphisms

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Definition

A central automorphism of a group G has the form

$$g^{lpha} = g \cdot \zeta(g)$$
 $\zeta: G
ightarrow Z(G)$

Examples

Let Γ be metrically homogeneous, bipartite and *antipodal* (i.e., the relation $d(x, y) = \delta$ defines a bijection). The antipodal map π is in the center of Aut(Γ), and the setwise stabilizer of the two parts is a subgroup of index 2, so there is a central automorphism.

The icosahedral graph, and the Johnson graph J(6,3) are also antipodal, and their automorphism groups have central automorphisms.

Twisted automorphisms and central automorphisms

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

For δ even, Γ bipartite antipodal, there is a a (non-trivially) twisted automorphism which affords a central automorphism: namely $\alpha = (1, \pi)$ acting as 1 on one part and as π on the other.

The converse holds: so central automorphisms usually do not come from twisted automorphisms.

Twisted automorphisms and central automorphisms

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

For δ even, Γ bipartite antipodal, there is a a (non-trivially) twisted automorphism which affords a central automorphism: namely $\alpha = (1, \pi)$ acting as 1 on one part and as π on the other.

The converse holds: so central automorphisms usually do not come from twisted automorphisms.

Theorem

Let Γ be a metrically homogeneous graph and $\alpha \in \operatorname{Aut}^*(\Gamma)$ a non-trivially twisted automorphism α of Γ inducing a non-trivial central automorphism of Γ . Then Γ is of antipodal type, bipartite, and of even diameter; if Γ is not an n-cycle, then α is $(1, \pi)$ or $(\pi, 1)$.

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

6 Some descriptive set theory

Imprimitive Structures

Generic type

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Theorem(ish)

Let Γ be a known primitive metrically homogeneous graph of generic type. Then $\operatorname{Aut}^*(\Gamma)$ induces the full automorphism group of $\operatorname{Aut}(\Gamma)$

Automatic Continuity

Combinatorial ingredients

Twists and Twistability Gregory

Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Definition

 $\mathcal{A}_{\rho}(\Gamma)$ is the set of finite [δ]-labeled graphs which embed into Γ as subgraphs. These are called *partial* Γ -spaces.

Example

 $\mathcal{A}_{p}(\Gamma^{\delta})$ is the set of [δ]-labeled graphs which can be extended to metric spaces with values in [δ].

Automatic Continuity

Combinatorial ingredients

Twists and Twistability Gregory

Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Definition

 $\mathcal{A}_{p}(\Gamma)$ is the set of finite [δ]-labeled graphs which embed into Γ as subgraphs. These are called *partial* Γ -spaces.

Example

 $\mathcal{A}_{p}(\Gamma^{\delta})$ is the set of [δ]-labeled graphs which can be extended to metric spaces with values in [δ].

Remarks

Completion process: use the path metric, truncated to δ . Obstructions: bad cycles where the path distance around the cycle is less than the label.

Automatic Continuity

Combinatorial ingredients

Twists and Twistability Gregory

Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Definition

 $\mathcal{A}_{p}(\Gamma)$ is the set of finite [δ]-labeled graphs which embed into Γ as subgraphs. These are called *partial* Γ -spaces.

Example

 $\mathcal{A}_{p}(\Gamma^{\delta})$ is the set of [δ]-labeled graphs which can be extended to metric spaces with values in [δ].

Remarks

Completion process: use the path metric, truncated to δ . Obstructions: bad cycles where the path distance around the cycle is less than the label.

Finitely many

Partial **F**-spaces

Twists and Twistability

Gregory Cherlin

- Twisted isomorphisms and the twisted automorphism group
- The random graph
- The *m*-random "graph"
- Metrically Homogeneous Graphs
- Induced Automorphisms
- Some descriptive set theory
- Imprimitive

Theorem (2016–17)

Let Γ be a known primitive metrically homogeneous graph of generic type. Then the partial Γ -spaces are characterized by finitely many forbidden configurations.

R. Coulson for $C - 2\delta > K_1, \delta/2, K_2 \ge \delta - 1$; Aranda, Bradley-Williams, Hubička, Karamanlis, Kompatscher, Konečný, Pawliuk in general.

Partial **F**-spaces

Twists and Twistability

Gregory Cherlin

- Twisted isomorphisms and the twisted automorphism group
- The random graph
- The *m*-random "graph"
- Metrically Homogeneous Graphs
- Induced Automorphisms
- Some descriptive set theory

Imprimitive

Theorem (2016–17)

Let Γ be a known primitive metrically homogeneous graph of generic type. Then the partial Γ -spaces are characterized by finitely many forbidden configurations.

R. Coulson for $C - 2\delta > K_1, \delta/2, K_2 \ge \delta - 1$; Aranda, Bradley-Williams, Hubička, Karamanlis, Kompatscher, Konečný, Pawliuk in general. The bipartite case clearly requires some modified approach (equivalence relations kill this finiteness property) ...

Partial **F**-spaces

Twists and Twistability

Gregory Cherlin

- Twisted isomorphisms and the twisted automorphism group
- The random graph
- The *m*-random "graph"
- Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Theorem (2016–17)

Let Γ be a known primitive metrically homogeneous graph of generic type. Then the partial Γ -spaces are characterized by finitely many forbidden configurations.

R. Coulson for $C - 2\delta > K_1, \delta/2, K_2 \ge \delta - 1$; Aranda, Bradley-Williams, Hubička, Karamanlis, Kompatscher, Konečný, Pawliuk in general. The bipartite case clearly requires some modified approach (equivalence relations kill this finiteness property) ...

Corollary

Under these hypotheses, the universal minimal flow for $Aut(\Gamma)$ is metrizable.

(Long story . . .)

Imprimitive

Imprimitive Structures

Generalized Ultrametric Spaces

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Theorem (Sam Braunfeld)

For every finite distributive lattice Λ there is a generic Λ -ultrametric space \mathbb{U}_{Λ} .

 $d(x,y) \leq \sup(d(x,z),d(z,y))$

Example

A linear order: ordinary ultrametric space.

Related work by van Thé, Conant, and others deals with other types of generalized metric spaces, retaining linear order but allowing other versions of the triangle inequality.

Generalized Ultrametric Spaces

Twists and Twistability

> Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Theorem (Sam Braunfeld)

For every finite distributive lattice Λ there is a generic Λ -ultrametric space \mathbb{U}_{Λ} .

Example

A linear order: ordinary ultrametric space.

Theorem (Braunfeld; Linear case known)

The universal minimal flow for $Aut(\mathbb{U}_{\Lambda} \text{ is metrizable}.$

Uses techniques of Hubička and Nešetřil (2016 preprint). The relations $d(x, y) \le \lambda$ are equivalence relations, so more sophisticated finiteness conditions are needed.

Questions

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Problem

When does $\operatorname{Aut}^*(\mathbb{U}_{\Lambda})$ split over $\operatorname{Aut}(\mathbb{U}_{\Lambda})$?

—If Λ is a Boolean algebra then it splits; possibly always?

Questions

Twists and Twistability

Gregory Cherlin

Twisted isomorphisms and the twisted automorphism group

The random graph

The *m*-random "graph"

Metrically Homogeneous Graphs

Induced Automorphisms

Some descriptive set theory

Imprimitive

Problem

When does $\operatorname{Aut}^*(\mathbb{U}_{\Lambda})$ split over $\operatorname{Aut}(\mathbb{U}_{\Lambda})$?

—If Λ is a Boolean algebra then it splits; possibly always?

More generally: for homogeneous binary (symmetric?) structures, is there a simple characterization of splitting—and is it equivalent to splitting for all involutions of $Aut(L/\Gamma)$?

This may be studied in particular in the finite setting: in that context, there is a conjectured classification of the finite primitive binary structures—see Wiscons; Gill, Hunt, Liebeck, Spiga, but no conjecture for the full classification.