
Twists and
Twistability

Gregory
Cherlin

Twisted
isomorphisms
and the
twisted
automorphism
group

The random
graph

The
m-random
“graph”

Metrically Ho-
mogeneous
Graphs

Induced Auto-
morphisms

Some
descriptive set
theory

Imprimitive
Structures

Twists and Twistability

Gregory Cherlin

University of Manchester
June 12, 2017, 4 P.M.



Twists and
Twistability

Gregory
Cherlin

Twisted
isomorphisms
and the
twisted
automorphism
group

The random
graph

The
m-random
“graph”

Metrically Ho-
mogeneous
Graphs

Induced Auto-
morphisms

Some
descriptive set
theory

Imprimitive
Structures

Twisted isomorphism: examples
— The twisted automorphism group

The random graph; descriptive set theory
— The m-random colored graph (Cameron/Tarzi)
— Metrically homogeneous graphs (Rebecca Coulson)
— Some topological dynamics

Generalized ultrametric spaces (Sam Braunfeld)
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Twisted isomorphism

Isomorphism up to language '∗

Example
Graph and graph complement.

C5: self-dual
Random Graph R: self-dual
Generic triangle-free H3 (Henson), Hc

3 is generic I3-free.

C6 '∗ Triangular prism (bad example)
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Twisted Isomorphism

Example
Graphs as metric spaces

C5, R, H3, as before (diameter 2)
C6,C7: diameter 3

C7:

1 2 3

or 1 2 3
Twists: Z/3Z (self-triality)
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Twisted Isomorphism

Example
Graphs as metric spaces

C5, R, H3, as before (diameter 2)
C6,C7, Ico: diameter 3

C7:

1 2 3 or 1 2 3
Twists: Z/3Z (self-triality)
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Example
Graphs as metric spaces

C5, R, H3, as before (diameter 2)
C6,C7, Ico: diameter 3

C7: Ico:

1 2 3 or 1 2 3
Twists: Z/3Z (self-triality)



Twists and
Twistability

Gregory
Cherlin

Twisted
isomorphisms
and the
twisted
automorphism
group

The random
graph

The
m-random
“graph”

Metrically Ho-
mogeneous
Graphs

Induced Auto-
morphisms

Some
descriptive set
theory

Imprimitive
Structures

Twisted Isomorphism

Example
Graphs as metric spaces

C5, R, H3, as before (diameter 2)
C6,C7, Ico: diameter 3

C7: Ico:

1 2 3 or 1 2 3 1↔ 2
Twists: Z/3Z (self-triality) Twists: Z/2Z
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Which language?

Canonical Language
G = Aut(Γ)
Relations RO for G-orbits O
Aut(Γcan) = Aut(Γ)
in fact: If G ≤ Sym(Γ) is closed then Aut(Γcan) = G.

Aut∗(Γcan) = NSym(Γ)(Aut(Γ))

Proof.

Oh = (Oh)G

O = OhGh−1

Gh ≤ G = G.
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Really?

The canonical language is infinite.
We can manage with less.

Definition
Γ is homogeneous for L if Aut(Γ)-orbits on Γn coincide with
L-isomorphism types.

Example
C5 is a graph, but C6 is a metric space.

Lk : restriction to k variables. Use the least k that works (for
us, k = 2).

If Γ is homogeneous for a finite language, and we use a
suitable Lk , we get the same twisted automorphisms.
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Really?

The canonical language is infinite.
We can manage with less.

Definition
Γ is homogeneous for L if Aut(Γ)-orbits on Γn coincide with
L-isomorphism types.

Example
Cn is homogeneous in the metric language, and
homogeneous as a graph if the diameter is at most 2
(n ≤ 5).

Example
C5 is a graph, but C6 is a metric space.

Lk : restriction to k variables. Use the least k that works (for
us, k = 2).

If Γ is homogeneous for a finite language, and we use a
suitable Lk , we get the same twisted automorphisms.
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Example
C5 is a graph, but C6 is a metric space.
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suitable Lk , we get the same twisted automorphisms.



Twists and
Twistability

Gregory
Cherlin

Twisted
isomorphisms
and the
twisted
automorphism
group

The random
graph

The
m-random
“graph”

Metrically Ho-
mogeneous
Graphs

Induced Auto-
morphisms

Some
descriptive set
theory

Imprimitive
Structures

Really?

The canonical language is infinite.
We can manage with less.

Definition
Γ is homogeneous for L if Aut(Γ)-orbits on Γn coincide with
L-isomorphism types.

Example
C5 is a graph, but C6 is a metric space.

Lk : restriction to k variables. Use the least k that works (for
us, k = 2).

If Γ is homogeneous for a finite language, and we use a
suitable Lk , we get the same twisted automorphisms.



Twists and
Twistability

Gregory
Cherlin

Twisted
isomorphisms
and the
twisted
automorphism
group

The random
graph

The
m-random
“graph”

Metrically Ho-
mogeneous
Graphs

Induced Auto-
morphisms

Some
descriptive set
theory

Imprimitive
Structures

1 Twisted isomorphisms and the twisted automorphism
group

2 The random graph

3 The m-random “graph”

4 Metrically Homogeneous Graphs

5 Induced Automorphisms

6 Some descriptive set theory

7 Imprimitive Structures



Twists and
Twistability

Gregory
Cherlin

Twisted
isomorphisms
and the
twisted
automorphism
group

The random
graph

The
m-random
“graph”

Metrically Ho-
mogeneous
Graphs

Induced Auto-
morphisms

Some
descriptive set
theory

Imprimitive
Structures

Two problems (Cameron, Tarzi)

When does Aut∗ split over Aut?
When does Aut∗ induce Aut(Aut)?
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R (Cameron, Tarzi)

Aut(L/R) = Aut∗(R)/Aut(R) ' Z/2Z (the group of twists).
Non-split: If α2 = 1 then d(x , xα) is a fixed point for α, so
α = 1.

Aut∗(R) = Aut(R)± is the full automorphism group of
Aut(R). Less clear.

Observation
Aut∗(Γ) induces continuous automorphisms of Aut(Γ).

Theorem (Automatic Continuity)

Any homomorphism from Aut(R) to a separable topological
group is continuous.

Descriptive Set Theory+Combinatorics
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R (Cameron, Tarzi)

Aut(L/R) = Aut∗(R)/Aut(R) ' Z/2Z (the group of twists).
Non-split: If α2 = 1 then d(x , xα) is a fixed point for α, so
α = 1.
Aut∗(R) = Aut(R)± is the full automorphism group of
Aut(R). Less clear.

Observation
Aut∗(Γ) induces continuous automorphisms of Aut(Γ).

Theorem (Automatic Continuity)

Any homomorphism from Aut(R) to a separable topological
group is continuous.

Descriptive Set Theory+Combinatorics
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Aut(L/R) = Aut∗(R)/Aut(R) ' Z/2Z (the group of twists).
Non-split: If α2 = 1 then d(x , xα) is a fixed point for α, so
α = 1.
Aut∗(R) = Aut(R)± is the full automorphism group of
Aut(R). Less clear.

Observation
Aut∗(Γ) induces continuous automorphisms of Aut(Γ).

Theorem (Automatic Continuity)

Any homomorphism from Aut(R) to a separable topological
group is continuous.

Descriptive Set Theory+Combinatorics
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Ample Generics and the Extension Property

Definition
A conjugacy class in G is generic if it is dense Gδ.
G has ample generics if Gn has a generic conjugacy class
for each n.
G has the small index property if every subgroup of
countable index is open.

Combinatorics =⇒ Ample generics
=⇒ S.I.P. =⇒ Automatic Continuity
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Strong Primitivity

Definition
Γ is strongly primitive if for all finite A ⊆ Γ and all orbits Ω
over A in Γ \ A,

Ω is infinite and primitive over A

Cf. extremely primitive finite permutation groups (Mann,
Burness, Praeger, Seress)

Example
R

Proposition (Cameron)
If Γ is strongly primitive then any proper open subgroup of
Aut(Γ) is contained in the stabilizer of a non-empty finite set.

Corollary

Aut(Aut(R)) preserves the family of setwise stabilizers of
finite subsets.
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Aut(Aut(R)) = Aut∗(R)

Claim
Aut(Aut(R)) preserves the family of vertex stabilizers.

Count double cosets:
H = (Aut Γ){A}.
Double cosets parametrize isomorphism types of pairs

(A1,A2) A1 ' A2 ' A

The number of isomorphism types is

≥ |A|2 + |A|+ 1 (|A1 ∩ A2|, |E ∩ (A1 × A2)| : |A|+ (|A|2 + 1))

= 3 if |A| = 1

Vertex stabilizers minimize this number.
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Aut(Aut(R)) = Aut∗(R)

Combinatorics, descriptive set theory: automatic continuity

Strong primitivity: Recognize stabilizers of finite sets

Double cosets, Type counting: Recognize vertex stabilizers

Aut(Aut(R)) = Aut∗(R).
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The m-random graph Rm

Use an m-sided “coin” (die).
L = {1, . . . ,m}. Rm is L-homogeneous.
Aut(L/Rm) = Sym(m)
R = R2.

Questions
Splitting?
Induced automorphisms?
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Splitting Rm

Theorem (Cameron, Tarzi)
Aut∗ splits over Aut iff m is odd.

The even case is illustrated by R: an involution without fixed
points cannot lift to a twisted automorphism of order 2.

For m odd, the splitting argument depends on the
robustness of the isomorphism type of Rm.

Example
Modify the construction of Rm as follows:

Allow any non-zero color probabilities p1, . . . ,pm which
sum to 1;
Fix an infinite set of vertices, and only use the die when
the edge contains one of the specified vertices;
otherwise, use any method you like (including waiting
till after all random choices are made)

Then with probability 1 the resulting structure is still Rm.
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Splitting Rm. m odd

Lemma (Cameron, Tarzi)
There is a finite m-edge colored graph with a regular action
of Sym(m) via correctly twisted automorphisms iff m is odd.

This comes down to choosing the color χ(σ) of (1, σ) for
σ 6= 1 subject to χ(σ)σ

−1
= χ(σ−1), at which point one sees

the relevance of the parity condition.

Given a finite m-edge colored graph A as above, view A× N
as the disjoint union of copies of A, with Sym(m) acting
naturally (fixing N).

Extend to a complete m-edge colored graph randomly on
edges of type [(a, i), (1, j)] with i < j , and use the action of
Sym(m) to complete the definition. The result is Rm with the
desired action of Sym(m).
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The action of Aut∗ on Aut

Everything done for R goes over to Rm.

Ample generics (Hrushovski, Herwig)
Strong primitiivity
Counting types of pairs (Cameron–Tarzi).
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The known metrically homogeneous graphs

Fact (Cameron, Macpherson)
The locally finite metrically homogeneous graphs of
diameter at least 3 are the following.

Cn for n ≥ 6.
The icosahedral graph
The Johnson graph J(6,3): 3-tuples, edges when the
intersection has order 2.
Bipartite complement of perfect matching
Macpherson’s tree-like Tm,n of infinite diameter, where
m,n <∞.

One can also have Tm,n with m or n infinite (still metrically
homogeneous).

Anything not mentioned above is said to be of generic type.
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Metrically homogeneous graphs of generic type

The random graph generalizes to the generic Kn-free graph
(Henson). Metrically homogeneous analogs include the
following.

Definition

ΓδK ,C is the generic metrically homogeneous graph of
diameter δ with no metric triangle of perimeter greater than
or equal to C, and no metric triangle of odd perimeter less
than 2K + 1 (approximately bipartite).

A modest generalization of this definition produces all
known metrically homogeneous graphs of generic type
(replacing K ,C by K1,K2,C0,C1 and some clique-like
constraints) . . .
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than 2K + 1 (approximately bipartite).

A modest generalization of this definition produces all
known metrically homogeneous graphs of generic type
(replacing K ,C by K1,K2,C0,C1 and some clique-like
constraints) . . .
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Classification conjecture

Conjecture
The metrically homogeneous graphs of generic type are the
graphs

ΓδK1,K2,C0,C1,S

The diameter 2 classification is classical (Lachlan/Woodrow,
1980).

Diameter 3 has been done, joint with Amato and
Macpherson (submitted).
In the diameter 3 case we took advantage of the twisted
isomorphism

Γ3
C=8 '

∗ Γ3
K =3

afforded by the cycle (123).

(3,3,2) 7→ (1,1,3) 7→ (2,2,1)

(C = 8) (K = 3)
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Metric twists

Theorem (R. Coulson)
The possible twists of a metrically homogeneous graph of
generic type are the permutations ρ, ρ−1, τ0, τ1, where τε is
the transposition (1, [δ + ε]− 1)(3, [δ + ε]− 3) · · · , and

ρ(i) =

{
2i i ≤ δ/2
2(δ − i) + 1 i > δ/2

The map ρ is a twisted isomorphism between

ΓδC=2δ+2 and ΓδK1=δ

The τε can act as twisted automorphisms, notably when

K1 =

⌊
δ + ε

2

⌋
K2 =

⌈
δ + ε

2

⌉
C = 2δ + 1 C′ = C + 1
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Splitting

Theorem
For any known metrically homogeneous graph of generic
type and diameter δ which allows a twist by τε the twisted
automorphism group splits over the automorphism group iff

δ + ε 6≡ 3 (mod 4)

The splitting part may be stated more precisely.

Theorem
For any known metrically homogeneous graph of generic
type and diameter δ which allows a twist by τε, if k , δ + ε− k
are fixed points for τε differing by at most 1, then there is a
twisted automorphism α of order 2 affording τε which
satisfies

d(x , xα) ∈ {k , δ + ε− k} for all x.
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Central automorphisms

Definition
A central automorphism of a group G has the form

gα = g · ζ(g) ζ : G→ Z (G)

Examples
Let Γ be metrically homogeneous, bipartite and antipodal
(i.e., the relation d(x , y) = δ defines a bijection). The
antipodal map π is in the center of Aut(Γ), and the setwise
stabilizer of the two parts is a subgroup of index 2, so there
is a central automorphism.
E.g. bipartite complement of perfect matching.

Examples
Let Γ be metrically homogeneous, bipartite and antipodal
(i.e., the relation d(x , y) = δ defines a bijection). The
antipodal map π is in the center of Aut(Γ), and the setwise
stabilizer of the two parts is a subgroup of index 2, so there
is a central automorphism.
The icosahedral graph, and the Johnson graph J(6,3) are
also antipodal, and their automorphism groups have central
automorphisms.
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Twisted automorphisms and central
automorphisms

For δ even, Γ bipartite antipodal, there is a a (non-triviallly)
twisted automorphism which affords a central
automorphism: namely α = (1, π) acting as 1 on one part
and as π on the other.
The converse holds: so central automorphisms usually do
not come from twisted automorphisms.

Theorem
Let Γ be a metrically homogeneous graph and α ∈ Aut∗(Γ) a
non-trivially twisted automorphism α of Γ inducing a
non-trivial central automorphism of Γ. Then Γ is of antipodal
type, bipartite, and of even diameter; if Γ is not an n-cycle,
then α is (1, π) or (π,1).
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Generic type

Theorem(ish)
Let Γ be a known primitive metrically homogeneous graph of
generic type.
Then Aut∗(Γ) induces the full automorphism group of Aut(Γ)
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Automatic Continuity

Combinatorial ingredients

Definition
Ap(Γ) is the set of finite [δ]-labeled graphs which embed into
Γ as subgraphs. These are called partial Γ-spaces.

Example

Ap(Γδ) is the set of [δ]-labeled graphs which can be
extended to metric spaces with values in [δ].

Remarks
Completion process: use the path metric, truncated to δ.
Obstructions: bad cycles where the path distance around
the cycle is less than the label.

Finitely many
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Partial Γ-spaces

Theorem (2016–17)
Let Γ be a known primitive metrically homogeneous graph of
generic type. Then the partial Γ-spaces are characterized
by finitely many forbidden configurations.

R. Coulson for C − 2δ > K1, δ/2, K2 ≥ δ − 1;
Aranda, Bradley-Williams, Hubička, Karamanlis,
Kompatscher, Konečný, Pawliuk in general.

The bipartite case clearly requires some modified approach
(equivalence relations kill this finiteness property) . . .

Corollary
Under these hypotheses, the universal minimal flow for
Aut(Γ) is metrizable.

(Long story . . . .)



Twists and
Twistability

Gregory
Cherlin

Twisted
isomorphisms
and the
twisted
automorphism
group

The random
graph

The
m-random
“graph”

Metrically Ho-
mogeneous
Graphs

Induced Auto-
morphisms

Some
descriptive set
theory

Imprimitive
Structures

Partial Γ-spaces

Theorem (2016–17)
Let Γ be a known primitive metrically homogeneous graph of
generic type. Then the partial Γ-spaces are characterized
by finitely many forbidden configurations.

R. Coulson for C − 2δ > K1, δ/2, K2 ≥ δ − 1;
Aranda, Bradley-Williams, Hubička, Karamanlis,
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Generalized Ultrametric Spaces

Theorem (Sam Braunfeld)
For every finite distributive lattice Λ there is a generic
Λ-ultrametric space UΛ.

d(x , y) ≤ sup(d(x , z),d(z, y))

Example
Λ linear order: ordinary ultrametric space.

Related work by van Thé, Conant, and others deals with
other types of generalized metric spaces, retaining linear
order but allowing other versions of the triangle inequality.

Theorem (Braunfeld; Linear case known)

The universal minimal flow for Aut(UΛ is metrizable.

Uses techniques of Hubička and Nešetřil (2016 preprint).
The relations d(x , y) ≤ λ are equivalence relations, so more
sophisticated finiteness conditions are needed.
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Questions

Problem
When does Aut∗(UΛ) split over Aut(UΛ)?

—If Λ is a Boolean algebra then it splits; possibly always?

More generally: for homogeneous binary (symmetric?)
structures, is there a simple characterization of
splitting—and is it equivalent to splitting for all involutions of
Aut(L/Γ)?

This may be studied in particular in the finite setting: in that
context, there is a conjectured classification of the finite
primitive binary structures—see Wiscons; Gill, Hunt,
Liebeck, Spiga, but no conjecture for the full classification.
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