The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

Examples

Issues

The minimal ca Upper bounds Combinatorics Group Theory

Questions

# The Relational Complexity of a Finite Permutation Group

**Gregory Cherlin** 



HIM, 10/2018

### Structures and Permutation Groups

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

Examples

Issues

Upper bounds Combinatorics Group Theory

Questions

Structure Permutation Group  $A \rightarrow \operatorname{Aut}(A)$  on A  $\operatorname{Inv}(G) \leftarrow G$  on A  $\operatorname{Inv}(G) = \bigcup A^n/G$ .  $L_k: A^k/G$  (k-types) language

• *k*-closed:  $G = \operatorname{Aut}(L_k)$ 

*k*-homogeneous: A<sup>ℓ</sup>-orbits are determined by L<sub>k</sub>-isomorphism, all ℓ.

*k*-homogeneous  $\implies$   $G^X$  *k*-closed, all subsets *X*.

### Example: Petersen Graph



# 2-closed3-homogeneous: Independent triples are triangles or stars Relational complexity 3.

### Examples: Homogeneous graphs

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

#### Examples

ISSUES The minimal cas Upper bounds Combinatorics Group Theory

Questions

### (Gardiner, Sheehan) $m \cdot K_n \quad C_5 (D_{2 \cdot 5}) \quad [3]^2 (\text{Sym}_3 \wr \text{Sym}_2)$

What about  $C_n$ ? *Metrically homogeneous, complexity 2, but*  $|A^2/G| \to \infty$ . (Bounded complexity, unbounded language) What about  $[n]^2$ ?

For  $n \ge 4$ : relational complexity is 4. (Edges || or  $\perp$ )

Relational complexity spectrum: [2,4] (mind the gap).

### Relational complexity spectrum

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

#### Examples

Issues

The minimal cas Upper bounds Combinatorics Group Theory

Questions

**a**  $\stackrel{r-1}{\sim}$  **a**'; **a**  $\not\sim$  **a**'; length *r*. W.I.o.g. **a**, **a**' agree on *r* - 1 entries

$$(a_1, \ldots, a_{r-1}, a)$$
  
 $(a_1, \ldots, a_{r-1}, a')$ 

### Example (GL(n, q), q > 2)

 $(v_1, \ldots, v_n, v)$  and  $(v_1, \ldots, v_n, v')$  basis and two linear combinations with non-zero coefficients. Relational complexity n + 1.

## Example: AO(n, F) anisotropic

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

#### Examples

Issues

Upper bounds Combinatorics Group Theory

Questions

# Affine space with an anisotropic quadratic form Relational complexity 2

$$Q(x_i - x_j)$$
 all  $i, j$   
 $|A^{(2)}/G| = q - 1$  (edge colors)

 $AO^{-}(2,3) = [3]^{2}$  $AO^{-}(2,4) =$  "Gleason graph"

### Some issues

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

Examples

#### Issues

The minimal cas Upper bounds Combinatorics Group Theory

Questions

- Bounded relational complexity  $\implies$  ??
- Compute or estimate relational complexity for "natural" actions
- Meaning of gaps in the relational complexity spectrum.
- Determine a canonical language.

## Relational complexity 2

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

Examples

ISSUES The minimal case

Upper bounds Combinatorics Group Theory

Questions

#### Conjecture

If G is binary and primitive then it is one of the following.

- Z/pZ acting regularly
- AO(n,q) anisotropic (so  $n \le 2$ )
- Sym(n), acting naturally.

Ch., Wiscons: reduction to almost simple case Gill, Spiga, Dalla Volta, Hunt, Liebeck: ongoing — Done: Alternating socle; Lie rank 1; sporadic

# Upper bounds

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

Examples

Issues The minimal case Upper bounds Combinatorics Group Theory

Questions

### Stabilizer height:

Breadth of the lattice of pointwise stabilizers; min r so that

any  $G_A$  is  $G_{A'}$  for some  $A' \subseteq A$ ,  $|A'| \leq r$ 

#### Nondegenerate sequence:

Independent point stabilizers (e.g., minimal base). Stabilizer height tends to be maximal size of minimal base.

Some exceptions:  $P\Gamma U(3, 4)$  in degree 65,  $3^4 : 16 : 4$ , or  $J_2$  on Hall-Janko graph

Relational complexity is bounded by stabilizer height plus 1 (so orbit tree search terminates)

### Example (Revisited)

 $GL_n(q)$ : stabilizer height *n*, relational complexity n + 1

## More upper bounds

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

Examples

ISSUES The minimal case Upper bounds Combinatorics Group Theory

Questions

• For a finite abelian group *A*, the maximal relational complexity in any action is rank(A)+1.

• For  $H \triangleleft G$  with abelian quotient, the relational complexity is bounded by

Stabilizer height of H + rank of G/H + 1

#### Example

The relational complexity of  $A\Gamma L(n, q)$  is at most n + 3

Hence for q > 2, it is n + 2 or n + 3.

#### Problem

When does  $A\Gamma L_1(q)$  have relational complexity 3?4?

### Action on k-sets

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

Examples

ISSUES The minimal cas Upper bounds Combinatorics Group Theory

Questions

#### Example

Stabilizer height of Sym<sub>n</sub> on k-sets

$$n-1 \ (k = 1)$$
  
 $n-2 \ (k = 2 \text{ or } n = 2k+2)$   
 $n-3 \ (k \ge 3, \ n \ne 2k+2)$ 

#### Relational complexity

• Sym<sub>n</sub>:  $\lfloor \log_2 k \rfloor + 2$ 

• Alt<sub>n</sub>: stabilizer height of Sym<sub>n</sub>.

Relational spectra:  $\text{Sym}_n$ : Interval [2, r.c.] Alt<sub>n</sub>: [2, r.c.<sub>Sym</sub>]  $\cup$  [ $h_{\text{Sym,min}}$ ,  $h_{\text{Sym,max}}$ ] (?) E.g. Alt<sub>11</sub>, k = 3: [2,3]  $\cup$  [5,8]

### Partitions

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

Examples

ISSUES The minimal cas Upper bounds Combinatorics Group Theory

Questions

• The relational complexity of  $\text{Sym}_{2n}$  on shape  $n \times 2$  is *n*. The relational complexity of  $\text{Alt}_{2n}$  on shape  $n \times 2$  is similar: n - 1, *n*, or (for n = 3) n + 1

#### Problem

Estimate the relational complexity of  $Sym_{nk}$  on shape  $n \times k$ , in particular shape  $2 \times k$ .

The "geometric height" (breadth of the lattice generated by the partitions of shape  $n \times k$ ) is known.

#### Problem

Is the stabilizer height of  ${\rm Sym}_{nk}$  on  $n\times k$  typically equal to this "geometric height?"

### Binary almost simple actions

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

Examples

ISSUES The minimal cas Upper bounds Combinatorics Group Theory

Questions

#### Conjecture

A binary primitive action with simple socle is  $Sym_n$  acting naturally.

Alternating socle handled by Gill and Spiga. Eliminate the rest?

• Case study: Socle = Monster (Dalla Volta, Gill, Spiga) (my understanding of the analysis)

44 known maximal subgroups up to conjugacy; any others have socle  $L_2(13)$  or  $L_2(16)$ .

### Elementary abelian groups

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

Examples

Issues

Upper bounds Combinatorics

Group Theory

Questions

#### Fact (Gill et al.)

If a binary group contains an elementary abelian p-subgroup  $A = \langle a, b \rangle$  of rank 2 with a, b, ab all conjugate, and a fixes a point  $\alpha$ , then the order of  $G_{\alpha}$  is divisible by  $p^2$ .

Removes 28 of the 44 maximal subgroups, and the two doubtful socles. (Primes 5, 7, 11.)

### Suborbit divisors

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

Examples

ISSUES The minimal cas Upper bounds Combinatorics Group Theory

Questions

#### Remark

Let G be a binary group on  $\Omega$ .

Suppose that (almost) every transitive binary action of the point stabilizer has degree divisible by the prime *p*. Then *p* divides  $|\Omega| - 1$ .

With a great deal of computation (Spiga) inside the point stabilizers, this eliminates 13 more, leaving:

#9.
$$S_3 \times Th$$
#15. $3^{3+2+6+6} : (L_3(3) \times SD_{16})$ #19. $5^{3+3} . (2 \times L_3(5))$ 

### The holdouts

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

Examples

ISSUES The minimal cas Upper bounds Combinatorics Group Theory

Questions

#9. $S_3 \times Th$ #15. $3^{3+2+6+6} : (L_3(3) \times SD_{16})$ #19. $5^{3+3} . (2 \times L_3(5))$ 

Examine suborbits, using structural information rather than computation

E.g.  $M = S_3 \times Th$ :

 $egin{aligned} &M=N(\langle a
angle) \ ( ext{order 3}) \ &N_{Th}(b)=(3 imes G_2(3)):2 \ ( ext{maximal}, \ |b|=3, \ b\in Th) \ &a^g=ab \ &M\cap M^g=N_M(ab)=\langle a
angle imes N_{Th}(b) \end{aligned}$ 

Orbit of M on Mg permutation isomorphic to primitive action of Th; contradiction.

## Some Group Theoretic Questions

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

Examples

Issues The minimal cas Upper bounds Combinatorics

Questions

#### Problem

Is there an absolute bound to the minimum relational complexity of some primitive action of every almost simple group?

#### Problem

Good bounds—especially, lower bounds—for the action of a primitive solvable group.

#### Problem

Minimal invariant languages for sporadic groups. Interpretation?

### Some Combinatorial Questions

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

Examples

Issues The minimal cas Upper bounds Combinatorics Group Theory

Questions

#### Problem

Estimate the complexity of  $\text{Sym}_{nk}$  (and  $\text{Alt}_{nk}$ ) on partitions of shape  $n \times k$ .  $\rho \approx c_k n$ ?  $c_k << k$ ?

#### Problem

Product action:  $\begin{bmatrix} n \\ k \end{bmatrix}^d$  under  $\operatorname{Sym}_n \wr \operatorname{Sym}_d$ 

#### Problem

Aschbacher classes  $C_1$ – $C_8$  (minimum over the cohort).

#### Problem

When does  $A\Gamma L_1(q)$  have relational complexity 3?4?

### Cohorts

The Relational Complexity of a Finite Permutation Group

> Gregory Cherlin

Definition

Examples

Issues The minim

Combinatorics Group Theory

Questions

#### Problem

Complexity spectrum for product actions with socle Alt<sup>d</sup><sub>n</sub> on  $[n]^d$ 

| Example (Product: Socle $Alt_{10}^2$ on [10] $\times$ [10]) |                                      |                           |  |
|-------------------------------------------------------------|--------------------------------------|---------------------------|--|
|                                                             | Group                                | Spectrum                  |  |
|                                                             | Sym <sub>10</sub> ≀Sym <sub>2</sub>  | {2,4}                     |  |
|                                                             | Alt <sub>10</sub> ≀ Sym <sub>2</sub> | $\{2, 4, 9\}$             |  |
|                                                             | $Alt_{10}^2.2^2$                     | $\{2,4,9,10,\ldots,16\}$  |  |
|                                                             | $Alt_{10}^2$ .4                      | $\{2,4,10,11,\ldots,16\}$ |  |

#### Problem

Spectrum for Alt<sub>n</sub> on k-sets:  $[2, \rho^+] \cup [h_{\min}, h_{\max}]$ ?