Cherlin

Permutation

Relational Complexity of a Finite Primitive **Structure**

Gregory Cherlin

Edinburgh, 19.9.2018

Contents

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Some natural](#page-42-0)

o Introduction

- Structures and permutation groups
- A little history
- Questions, examples
- **•** Small Complexity
- Natural examples

Cherlin

[Structures and](#page-2-0) Permutation Groups

[Some natural](#page-42-0)

1 [Structures and Permutation Groups](#page-2-0)

[Questions, Examples](#page-16-0)

[Very small](#page-19-0) ρ

[History](#page-13-0)

5 [Some natural examples](#page-42-0)

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Structures and](#page-2-0) Permutation Groups

Structure **Permutation Group**

Remark

A is homogeneous in the canonical language. (Orbits are isomorphism types.)

Example

Cherlin

[Structures and](#page-2-0) Permutation Groups

$$
\frac{A}{C_n} \qquad \qquad \frac{G}{D_{2n}}L_2: \text{ path metric } d(x, y) = i
$$

Example

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Structures and](#page-2-0) Permutation Groups

- k-closed: $G = \text{Aut}(A \restriction L_k)$
- L_k -homogeneous: L_k -isomorphism types determine G-orbits

k-closure and homogeneity

k-closure and homogeneity

Independent triples: {1, 2}, {1, 3}, {2, 3} (triangle); {1, 2}, {1, 3}, {1, 4} (star).

Relational Complexity

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Structures and](#page-2-0) Permutation Groups

$$
\rho(G) = \min(r : A \upharpoonright L_r \text{ is } G\text{-homogeneous})
$$

Relational Complexity

Relational [Complexity of](#page-0-0) a Finite Primitive **Structure**

Cherlin

[Structures and](#page-2-0) Permutation Groups

[Some natural](#page-42-0)

$$
\rho(G) = \min(r : A \upharpoonright L_r \text{ is } G\text{-homogeneous})
$$

rc-spectrum

$$
\{r \mid \exists (a_1, \ldots, a_r), (a'_1, \ldots, a'_r)
$$

Not *G*-conjugate
all proper restrictions *G*-conjugate}

 $\rho(G) = \sup(\text{rc-spectrum})$

Cherlin

[Structures and](#page-2-0)

[History](#page-13-0)

[Some natural](#page-42-0)

[Structures and Permutation Groups](#page-2-0)

[Questions, Examples](#page-16-0)

[Very small](#page-19-0) ρ

2 [History](#page-13-0)

5 [Some natural examples](#page-42-0)

Model Theoretic Background

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Structures and](#page-2-0) Permutation

[History](#page-13-0)

[Some natural](#page-42-0)

Lachlan Homogeneous for a finite relational language ρ bounded A^{ρ}/G bounded. (Stability theory)

Model Theoretic Background

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[History](#page-13-0)

Lachlan Homogeneous for a finite relational language ρ bounded A^{ρ}/G bounded.

(Stability theory)

Generalization: A^4/G bounded.

Kantor-Liebeck-Macpherson Classified in the primitive case.

Classical or semi-classical geometries.

C-H Structure theory based on the primitive classification (neostability theory)

Cherlin

[Structures and](#page-2-0)

[Questions,](#page-16-0) Examples

[Some natural](#page-42-0)

[Structures and Permutation Groups](#page-2-0)

3 [Questions, Examples](#page-16-0)

[History](#page-13-0)

5 [Some natural examples](#page-42-0)

[Very small](#page-19-0) ρ

Questions for the primitive case

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Questions,](#page-16-0) Examples

- What can we say about A if ρ is bounded?
- What can we say about ρ (and possibly the spectrum) when A is "natural?"
- What is the meaning of gaps in the spectrum?

A few more examples

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Structures and](#page-2-0) Permutation

[Questions,](#page-16-0) **Examples**

\n- \n
$$
SL_n < G \leq GL_n: n + 1 \text{ (linear algebra)}
$$
\n
	\n- \n $SL_n: n$ \n
	\n- \n $ASL_n < G \leq AGL_n: n + 2 \text{ unless } n = 1, G = D_{2 \cdot q}$ \n
	\n- \n $O^{\pm}(n, q), q \neq 2: \begin{cases} n & \text{isotropic} \\ 2 & \text{anisotropic} \end{cases}$ \n
	\n- \n $P^1: 4 \text{ (cross ratio)}$ \n
	\n- \n $P([n]), \text{Sym}(n): \lfloor \log_2 n \rfloor + 1$ \n
	\n\n
\n

$$
\sqrt[n]{|\alpha(\bar{S})|} = i^n \ \alpha \text{ a Boolean atom}
$$

Cherlin

[Structures and](#page-2-0)

[Very small](#page-19-0) ρ

[Some natural](#page-42-0)

[Structures and Permutation Groups](#page-2-0)

[Questions, Examples](#page-16-0)

[History](#page-13-0)

4 [Very small](#page-19-0) ρ

5 [Some natural examples](#page-42-0)

Small ρ : $\rho = 2$

Cherlin

Permutation

[Very small](#page-19-0) ρ

Conjecture (Binary Conjecture)

The (finite) primitive binary structures are

- \vec{C}_p (regular action)
- \bullet Sym(n) (theory of equality)
- \bullet AO(n, q) anisotropic

Small ρ : $\rho = 2$

Cherlin

[Very small](#page-19-0) ρ

Conjecture (Binary Conjecture)

The (finite) primitive binary structures are

- \vec{C}_p (regular action)
- \circ Sym(n) (theory of equality)
- \bullet AO(n, q) anisotropic

Cherlin, Wiscons: reduced to almost simple case (Very dependent on the value $\rho = 2$)

Almost Simple Case

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Structures and](#page-2-0)

[Very small](#page-19-0) ρ

[Some natural](#page-42-0)

Gill, Spiga, Dalla Volta, Hunt, Liebeck

Almost Simple Case

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Very small](#page-19-0) ρ

Gill, Spiga, Dalla Volta, Hunt, Liebeck

Theorem (Gill, Spiga)

The Binary Conjecture holds for alternating socle.

Almost Simple Case

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Very small](#page-19-0) ρ

Gill, Spiga, Dalla Volta, Hunt, Liebeck

Theorem (Gill, Spiga)

The Binary Conjecture holds for alternating socle.

The easy cases:

- Sym(n) on k-sets: $\log_2 k$ + 2 (bounded family, but not usually 2)
- Sym($n = n_1 n_2$) on partitions of shape $n_1 \times n_2$: At least

 $max(n_1, |\log_2 2(n_2 - 1)|)$

Alternating Socle: Primitive Point Stabilizer

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Very small](#page-19-0) ρ

[Some natural](#page-42-0)

The hard case Primitive point stabilizer $M = G_*$

Key device: Elements of M have few fixed points on $[n]$

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Structures and](#page-2-0) Permutation

[Very small](#page-19-0) ρ

[Some natural](#page-42-0)

 $M\setminus G$ [n] α ? (0)(1243) \cdots \in M β ? (01234) $\notin M$

$$
\alpha = (0)(1243) \cdots \in M. \ \beta = (01234) \text{ not in } M
$$

$$
H = \langle \alpha, \beta \rangle \simeq \mathbb{F}_5 \rtimes \mathbb{F}_5^{\times}, \text{ acting naturally on } \{0, 1, 2, 3, 4\}.
$$

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Very small](#page-19-0) ρ

[Some natural](#page-42-0)

$$
M \setminus G \qquad [n]
$$

\n
$$
\alpha \quad (\tilde{0})(\tilde{1}, \tilde{2}, \tilde{4}, \tilde{3}) \cdots \qquad (0)(1243) \cdots \in M
$$

\n
$$
\beta \quad (\tilde{0}, \tilde{1}, \tilde{2}, \tilde{3}, \tilde{4}) \cdots \qquad (01234) \qquad \notin M
$$

 $\alpha = (0)(1243) \cdots \in M$. $\beta = (01234)$ not in M $H = \langle \alpha, \beta \rangle \simeq \mathbb{F}_5 \rtimes \mathbb{F}_5^{\times}$, acting naturally on $\{0, 1, 2, 3, 4\}.$ Let $\tilde{0}$ be M in $M\backslash G$ and let $\tilde{O} = \tilde{0} \cdot H = (\tilde{0}, \tilde{1}, \ldots, \tilde{4})$.

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Very small](#page-19-0) ρ

[Some natural](#page-42-0)

$$
M \setminus G \qquad [n]
$$

\n
$$
\alpha \quad (\tilde{0})(\tilde{1}, \tilde{2}, \tilde{4}, \tilde{3}) \cdots \qquad (0)(1243) \cdots \in M
$$

\n
$$
\beta \quad (\tilde{0}, \tilde{1}, \tilde{2}, \tilde{3}, \tilde{4}) \cdots \qquad (01234) \qquad \notin M
$$

 $\alpha = (0)(1243) \cdots \in M$. $\beta = (01234)$ not in M $H = \langle \alpha, \beta \rangle \simeq \mathbb{F}_5 \rtimes \mathbb{F}_5^{\times}$, acting naturally on $\{0, 1, 2, 3, 4\}.$ Let $\tilde{0}$ be M in $M\backslash G$ and let $\tilde{O} = \tilde{0} \cdot H = (\tilde{0}, \tilde{1}, \ldots, \tilde{4})$. Then $H_0 = H_0 = \langle \alpha \rangle$ and H acts doubly transitively on \tilde{O} .

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Very small](#page-19-0) ρ

$$
M \setminus G \qquad [n]
$$

\n
$$
\alpha \quad (\tilde{0})(\tilde{1}, \tilde{2}, \tilde{4}, \tilde{3}) \cdots \qquad (0)(1243) \cdots \in M
$$

\n
$$
\beta \quad (\tilde{0}, \tilde{1}, \tilde{2}, \tilde{3}, \tilde{4}) \cdots \qquad (01234) \qquad \notin M
$$

 $\alpha = (0)(1243) \cdots \in M$. $\beta = (01234)$ not in M $H = \langle \alpha, \beta \rangle \simeq \mathbb{F}_5 \rtimes \mathbb{F}_5^{\times}$, acting naturally on $\{0, 1, 2, 3, 4\}.$ Let $\tilde{0}$ be M in $M\backslash G$ and let $\tilde{O} = \tilde{0} \cdot H = (\tilde{0}, \tilde{1}, \ldots, \tilde{4})$. Then $H_0 = H_0 = \langle \alpha \rangle$ and H acts doubly transitively on \tilde{O} . Binarity: G induces $\text{Sym}(\tilde{O})$ on \tilde{O} .

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Very small](#page-19-0) ρ

$$
M \setminus G \qquad [n]
$$

\n
$$
\alpha \quad (\tilde{0})(\tilde{1}, \tilde{2}, \tilde{4}, \tilde{3}) \cdots \qquad (0)(1243) \cdots \in M
$$

\n
$$
\beta \quad (\tilde{0}, \tilde{1}, \tilde{2}, \tilde{3}, \tilde{4}) \cdots \qquad (01234) \qquad \notin M
$$

 $\alpha = (0)(1243) \cdots \in M$. $\beta = (01234)$ not in M $H = \langle \alpha, \beta \rangle \simeq \mathbb{F}_5 \rtimes \mathbb{F}_5^{\times}$, acting naturally on $\{0, 1, 2, 3, 4\}.$ Let $\tilde{0}$ be M in $M\backslash G$ and let $\tilde{O} = \tilde{0} \cdot H = (\tilde{0}, \tilde{1}, \ldots, \tilde{4})$. Then $H_0 = H_0 = \langle \alpha \rangle$ and H acts doubly transitively on \tilde{O} . Binarity: G induces $\text{Sym}(\tilde{O})$ on \tilde{O} .

In particular β has a conjugate β' such that $\beta\beta'$ is nontrivial and fixes 0 .

Return to $[n]$: Many fixed points, in M: contradiction! (or n is not very large).

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Very small](#page-19-0) ρ

Then many orbits of length 4 $(\alpha^2$ has few fixed points). Take 5 such orbits and make the regular representation of $H = \mathbb{F}_5 \rtimes \mathbb{F}_5^\times$, with β having exactly 4 orbits of length 5.

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Very small](#page-19-0) ρ

Then many orbits of length 4 $(\alpha^2$ has few fixed points). Take 5 such orbits and make the regular representation of $H = \mathbb{F}_5 \rtimes \mathbb{F}_5^{\times}$, with β having exactly 4 orbits of length 5. We still have $\tilde{0}$ fixed by $\langle \alpha \rangle$.

$$
M \setminus G \qquad [n]
$$

\n
$$
\alpha \quad (\tilde{0})(\tilde{1}, \tilde{2}, \tilde{4}, \tilde{3}) \quad (e, a, a^2, a^3)(b, ba, ba^2, ba^3) \cdots \in M
$$

\n
$$
\beta \quad (\tilde{0}, \tilde{1}, \tilde{2}, \tilde{3}, \tilde{4}) \quad (1, b, b^2, b^3, b^4)(\cdots)(\cdots)(\cdots) \notin M
$$

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Very small](#page-19-0) ρ

Then many orbits of length 4 $(\alpha^2$ has few fixed points). Take 5 such orbits and make the regular representation of $H = \mathbb{F}_5 \rtimes \mathbb{F}_5^{\times}$, with β having exactly 4 orbits of length 5. We still have $\tilde{0}$ fixed by $\langle \alpha \rangle$.

$$
M \setminus G \qquad [n]
$$

\n α (0)(1, 2, 4, 3) (e, a, a², a³)(b, ba, ba², ba³) ... $\in M$
\n β (0, 1, 2, 3, 4) (1, b, b², b³, b⁴)(...)(...)(...) $\notin M$

Finish as before, working mostly in $M\backslash G$.

M has no element of order 4?

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Very small](#page-19-0) ρ

Meanders ...

Wander through the various possibilities for M, coming back to M almost simple by the same method.

Then use the classification of finite simple groups (or rather an early result in that direction).

M has no element of order 4?

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Very small](#page-19-0) ρ

Meanders ...

Wander through the various possibilities for M, coming back to M almost simple by the same method.

Then use the classification of finite simple groups (or rather an early result in that direction).

Exceptions occur:

E.g., $\text{Sym}(p)$ on AGL(1, p) (and its restriction to $\text{Alt}(p)$).

$\overline{\mathrm{Sym}(p)}$ with stabilizer AGL(1, p)

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Structures and](#page-2-0)

[Very small](#page-19-0) ρ

[Some natural](#page-42-0)

This is the action on Sylow p-subgroups by conjugacy.

$\mathrm{Sym}(p)$ with stabilizer AGL(1, p)

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Very small](#page-19-0) ρ

This is the action on Sylow p-subgroups by conjugacy. AGL(1, p) = $C_p \rtimes C_{p-1}$; for $p \ge 5$, a given C_{p-1} normalizes more than 1 p -Sylow.

So $AGL(1, p)$ acts on some orbits as on the affine line, with relational complexity 3.

$\mathrm{Sym}(p)$ with stabilizer AGL(1, p)

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Very small](#page-19-0) ρ

This is the action on Sylow p-subgroups by conjugacy. AGL(1, p) = $C_p \rtimes C_{p-1}$; for $p \ge 5$, a given C_{p-1} normalizes more than 1 p -Sylow.

So $AGL(1, p)$ acts on some orbits as on the affine line, with relational complexity 3.

(Similarly for AGL $(1, p) \cap$ Alt (p) once $p > 5$.)

Sporadic socle

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Very small](#page-19-0) ρ

Gill, Dalla Volta, Spiga, to appear.

Theorem

There are no primitive binary actions of almost simple groups with sporadic socle.

Sporadic socle

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Very small](#page-19-0) ρ

Gill, Dalla Volta, Spiga, to appear.

Theorem

There are no primitive binary actions of almost simple groups with sporadic socle.

Most actions are explicitly known. Computation will reach a certain distance (and rather far if supported by a rich range of theoretical tests).

Again, the "small stabilizer" case arises, and the fact that one just needs to understand one M-orbit can be very helpful.

Notably, $M = Alt_4 \times \text{Sym}_5$ in Co₃, $(5:4) \times Alt_5$ in Ru, where one finds $M \cap M^g = 2$ -Sylow for some g.

Sporadic socle

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Very small](#page-19-0) ρ

Gill, Dalla Volta, Spiga, to appear.

Theorem

There are no primitive binary actions of almost simple groups with sporadic socle.

Most actions are explicitly known. Computation will reach a certain distance (and rather far if supported by a rich range of theoretical tests).

Again, the "small stabilizer" case arises, and the fact that one just needs to understand one M-orbit can be very helpful.

Notably, $M = Alt_4 \times \text{Sym}_5$ in Co₃, $(5:4) \times Alt_5$ in Ru, where one finds $M \cap M^g = 2$ -Sylow for some g.

Observation There are relatively few transitive binary actions as well, apparently and this can be remarkably useful in exploiting knowledge about the point stabilizer.

Cherlin

[Structures and](#page-2-0)

[Some natural](#page-42-0) examples

[Structures and Permutation Groups](#page-2-0)

[Questions, Examples](#page-16-0)

[History](#page-13-0)

[Very small](#page-19-0) ρ

k-sets

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Structures and](#page-2-0)

[Some natural](#page-42-0) examples

k-sets under Sym(n): $\log_2 k$ + 2 (Remains bounded as $n \to \infty$.)

k-sets

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Some natural](#page-42-0) examples

```
k-sets under Sym(n): \log_2 k + 2
(Remains bounded as n \to \infty.)
k-sets under \mathrm{Alt}(n):
```

$$
\begin{cases}\nn - 1 & \text{if } k = 1 \\
n - 2 & \text{if } k = 2 \text{ or } n = 2(k + 1) \\
n - 3 & \text{otherwise}\n\end{cases}
$$

k-sets

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Some natural](#page-42-0) examples

k-sets under Sym(n): $\log_2 k$ + 2 (Remains bounded as $n \to \infty$.) k -sets under $\mathrm{Alt}(n)$:

$$
\begin{cases}\nn - 1 & \text{if } k = 1 \\
n - 2 & \text{if } k = 2 \text{ or } n = 2(k + 1) \\
n - 3 & \text{otherwise}\n\end{cases}
$$

Why?

Relational spectrum

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Some natural](#page-42-0) examples

Spectrum: Sym(20) on 4-tuples: (2-4) Spectrum: Alt(20) on 4-tuples: (2-4,8-17). Both pieces derived from the action of Sym(20)

Relational spectrum

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Some natural](#page-42-0) examples

Spectrum: Sym(20) on 4-tuples: (2–4) Spectrum: Alt(20) on 4-tuples: (2–4,8–17). Both pieces derived from the action of Sym(20) Above $\rho^+=\rho$ (k-sets, $\mathrm{Sym}(n))$ the relational spectrum for $\mathrm{Alt}(n)$ on k-sets comes from sequences of k-sets which just separate points in $[n]$. Namely (X_1, \ldots, X_r) and its image under an odd permutation.

Relational spectrum

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Some natural](#page-42-0) examples

Spectrum: Sym(20) on 4-tuples: (2–4) Spectrum: Alt(20) on 4-tuples: (2–4,8–17). Both pieces derived from the action of Sym(20) Above $\rho^+=\rho$ (k-sets, $\mathrm{Sym}(n))$ the relational spectrum for $\mathrm{Alt}(n)$ on k-sets comes from sequences of k-sets which just separate points in $[n]$. Namely (X_1, \ldots, X_r) and its image under an odd permutation.

Question

What is the longest sequence of k -sets which just separates points in [n]?

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Some natural](#page-42-0) examples

Proposition

Suppose there is a sequence of k-sets of length r which just separates points in [n]. Then there is a numerical partition of n into a sum of n $-$ r terms n $=$ $\sum n_i$ with the following splitting property: if $n_i\geq 2$ and n_i is replaced by $(1,n_i-1)$ then some subsum involving exactly one of these two terms sums to k.

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Some natural](#page-42-0) examples

Proposition

Suppose there is a sequence of k-sets of length r which just separates points in [n]. Then there is a numerical partition of n into a sum of n $-$ r terms $n=\sum n_i$ with the following splitting property: if $n_i\geq 2$ and n_i is replaced by $(1,n_i-1)$ then some subsum involving exactly one of these two terms sums to k.

Application: Look for the shortest sum with the splitting property:

Then reverse the analysis.

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Some natural](#page-42-0) examples

Proposition

Suppose there is a sequence of k-sets of length r which just separates points in [n]. Then there is a numerical partition of n into a sum of n $-$ r terms n $=$ $\sum n_i$ with the following splitting property: if $n_i\geq 2$ and n_i is replaced by $(1,n_i-1)$ then some subsum involving exactly one of these two terms sums to k.

The analysis: If we omit X_i , there is a pair (a_i,b_i) no longer separated.

This makes an acyclic graph with r edges, so $n - r$ components. The sizes of the components are the n_i .

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Some natural](#page-42-0) examples

Proposition

Suppose there is a sequence of k-sets of length r which just separates points in [n]. Then there is a numerical partition of n into a sum of n $-$ r terms n $=$ $\sum n_i$ with the following splitting property: if $n_i\geq 2$ and n_i is replaced by $(1,n_i-1)$ then some subsum involving exactly one of these two terms sums to k.

The analysis: If we omit X_i , there is a pair (a_i,b_i) no longer separated.

This makes an acyclic graph with r edges, so $n - r$ components. The sizes of the components are the n_i .

To reverse, use stars and make the k-sets correspondingly (and check).

Cohorts?

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Some natural](#page-42-0) examples

This is a mechanism whereby low complexity for one group in a cohort may result in high complexity for smaller groups. But low complexity is not that common.

We will look at a more delicate case.

$Sym(2n)$ and $Alt(2n)$ on partitions: shape $n \times 2$

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Structures and](#page-2-0) Permutation

[Some natural](#page-42-0) examples

(2017-18, with Wiscons)

 ρ^+ (n \times 2) : n

$Sym(2n)$ and $Alt(2n)$ on partitions: shape $n \times 2$

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Some natural](#page-42-0) examples

(2017-18, with Wiscons)

 ρ^+ (n \times 2) : n

Möbius Band

Edge-colored graph: connected, but any two edge colors have small components.

$Sym(2n)$ and $Alt(2n)$ on partitions: shape $n \times 2$

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Some natural](#page-42-0) examples

(2017-18, with Wiscons)

 $\rho^+ (n \times 2)$: n $\rho^-(n\times 2)$: $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $n + 1$ $n = 3$ $n = 2, 4$; or odd; or a multiple of 6 $n-1$ n > 6 even, not a multiple of 6 (or so it seems)

$\text{Sym}(2n)$ and $\text{Alt}(2n)$ on partitions: shape $n \times 2$

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Some natural](#page-42-0) examples

(2017-18, with Wiscons)

 $\rho^+ (n \times 2)$: n $\rho^-(n\times 2)$: $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $n + 1$ $n = 3$ $n = 2, 4$; or odd; or a multiple of 6 $n-1$ n > 6 even, not a multiple of 6 (or so it seems)

Some of this follows by direct inheritance from $\text{Sym}(n)$:

- Inheritance for *n* odd: $\rho^- \ge \rho^+$ because when
	- $n = n_1 + n_2$, one of the parts is odd (Möbius band)
- Sequences of partitions just separating points: $n 1$ if $n > 2$.

Independent partitions of shape $n \times k$

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Structures and](#page-2-0) Permutation

[Some natural](#page-42-0) examples

Maximum sequences of partitions of shape $n \times k$ which just separate points.

 $\sqrt{ }$ \int $\overline{\mathcal{L}}$ $n(k-1)$ if $m = n = 2$ $n(k-1)-1$ if min $(n,k)=2$ and max $(n,k)>2$ $n(k-1)-2$ if $n, k > 2$

Independent partitions of shape $n \times k$

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Some natural](#page-42-0) examples

$$
\begin{cases}\nn(k-1) & \text{if } m = n = 2 \\
n(k-1) - 1 & \text{if } \min(n, k) = 2 \text{ and } \max(n, k) > 2 \\
n(k-1) - 2 & \text{if } n, k > 2\n\end{cases}
$$

Maximum sequences of partitions of shape $n \times k$ which just

 $nk = \sum n_i$. The splitting condition:

If $n_i > 2$ then the sum with n_i split to $1 + (n_i - 1)$ can be rearranged into n sums equal to k (with $1,(n_i-1)$) separated).

Examples (Optimal)

separate points.

$$
\begin{array}{llll}\nk^{n-2}(k-1)^21^2 & k^{n-1}1^k & (k-1)^n21^{n-2} & (k+1)1^{(n-1)k-1} \\
n+2 & n+k-1 & 2n-1 & (n-1)k\n\end{array}
$$

General shapes

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Some natural](#page-42-0) examples

Conjecture

The relational complexity of $\text{Alt}(nk)$ on shape $n \times k$ is well approximated by $n(k - 1) - 2$ (and should always be at least that). The relational complexity of $Sym(nk)$ on shape $n \times k$ is

typically much less (but not for $k = 2$).

Shape $2 \times k$

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Structures and](#page-2-0)

[Some natural](#page-42-0) examples

For Alt(2k) we expect $2k - 3$.

Shape $2 \times k$

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Some natural](#page-42-0) examples

 E_{reduced}

For $Sym(2k)$ there is a lower bound applying to the point stabilizer, namely

 $2|\log_2 k|$

This may possibly be the true value for the point stabilizer when k is odd.

Problems I

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Some natural](#page-42-0) examples

Problem

Show that the relational complexity of $\text{Sym}(nk)$ acting on cosets of $\text{Sym}(k) \wr \text{Sym}(n)$ has relational complexity going to infinity with n.

Problems I

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Some natural](#page-42-0) examples

Problem

Show that the relational complexity of $Sym(nk)$ acting on cosets of $\text{Sym}(k) \wr \text{Sym}(n)$ has relational complexity going to infinity with n.

Problem

Let $\rho_0(G) = \min(\rho(X, G) |$ primitive). Is this uniformly bounded for G simple? If so, what is the minimum bound holding for almost all such G?

Problems II

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

[Structures and](#page-2-0)

[Some natural](#page-42-0) examples

Problem

Show that

$$
\lim_{n\to\infty}\rho^+(n\times k)/n=c_k
$$

for some explicit constant c_k (<< k?).

Problems II

Relational [Complexity of](#page-0-0) a Finite Primitive Structure

Cherlin

Permutation

[Some natural](#page-42-0) examples

Problem

Show that

$$
\lim_{n\to\infty}\rho^+(n\times k)/n=c_k
$$

for some explicit constant c_k (<< k?).

Problem

Determine the relational complexity of $\lceil \frac{n}{k} \rceil$ $\binom{n}{k}^d$

 $(k = 1: Sarcino.)$