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Structures and permutation groups

Structure Permutation
Group

A −→ Aut(A)

Ak/G ←− G

Remark
A is homogeneous in the canonical language. (Orbits are
isomorphism types.)
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Twisted isomorphism

Isomorphism up to a permutation of the language is called a
twisted isomorphism.
The twist is the associated permutation of the language.

Example (Homogeneous graphs)
Up to graph complementation, the infinite primitive
homogeneous graphs are

The random graph R
The generic Kn-free graphs Hn, n <∞ (Henson).

Hn '∗ Hc
n

R '∗ R (with non-trivial twist)
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Twisted Automorphisms

The twisted automorphism group Aut∗(Γ).

Aut∗(Γ) = NSym(Γ)(Aut(Γ))

1→ Aut(Γ)→ Aut∗(Γ)→ Out(Γ)→ 1

Out(Γ), the group of twists, is a permutation group acting on
the language.

Example

Out(Hn) = 1 Out(R) = Sym(2)
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The twisted automorphism group Aut∗(Γ).

Aut∗(Γ) = NSym(Γ)(Aut(Γ))
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The splitting problem

Question (Cameron, Tarzi 2007)
When does the twisted automorphism group split?

Example
The twisted automorphism group of R does not split.

(No involutory anti-automorphism of R.)
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The splitting problem

Question (Cameron, Tarzi 2007)
When does the twisted automorphism group split?

Example
The twisted automorphism group of R does not split.

(No involutory anti-automorphism of R.)
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1 Twisted Automorphisms

2 Random Edge Colorings

3 Twists of metrically homogeneous graphs

4 Lifting involutions
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m-Random Graphs

Rn: Infinite complete graph with a random edge coloring by
n colors

Out(Rn) : Sym(n)

When does this split?

n 1 2 . . .
Splits? X 7

Table: Data
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Rn: Infinite complete graph with a random edge coloring by
n colors
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Rn: Infinite complete graph with a random edge coloring by
n colors
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Splitting m-random graphs

Theorem (CT07)
For fixed n the following are equivalent.

Aut∗(Rn) splits.
n is odd.
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Splitting m-random graphs

Theorem (CT07)
For fixed n the following are equivalent.

Aut∗(Rn) splits.
Every involutory twist lifts to an involutory twisted
automorphism.
Every involution in Sym(n) fixes a point.
n is odd.
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Splitting m-random p-hypergraphs

Theorem
For fixed n and p prime the following are equivalent.

Aut∗(R(p)
n ) splits.

Every twist of order p lifts to a twisted automorphism of
order p.
Every element of order p in Sym(n) fixes a point.
n is not divisible by p.
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Splitting m-random k -hypergraphs

Theorem
For fixed n and k the following are equivalent.

Aut∗(R(k)
n ) splits.

Every subgroup of Sym(n) whose order divides k fixes
a point.
(Every cyclic subgroup of Sym(n) whose order divides
k fixes a point.)
(n is not a sum of non-trivial divisors of k.)

Example: k = 6, n = 5, τ = (12)(345).

Necessity.
H ≤ Sym(n), order divides k .
Then H leaves some k -set invariant.
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Splitting m-random k -hypergraphs

Theorem
For fixed n and k the following are equivalent.

Aut∗(R(k)
n ) splits.

Every subgroup of Sym(n) whose order divides k fixes
a point.

Example: k = 6, n = 5, τ = (12)(345). Necessity.
H ≤ Sym(n), order divides k .
Then H leaves some k -set invariant.
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Splitting construction

Target: A lifting of Sym(n) on [n] to an action on R(k)
n .

Strategy: Action first, structure afterward.

Start with disjoint copies Ai of the regular action of
Sym(n) on itself.
Define the coloring on each orbit on k -sets.

Representative e, setwise stabilizer H: H|, divides
|e| = k .
Use a random fixed point for H.

Extension property
infinitely many chances with trivial setwise stabilizer,
randomness wins
(new point in Ai , i very large).
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2 Random Edge Colorings

3 Twists of metrically homogeneous graphs
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Metrically homogeneous graphs

Definition
A connected graph Γ is metrically homogeneous if it is
homogeneous when viewed as a metric space in the graph
metric.

Implies distance transitivity: orbits on pairs are given by
distance.

Examples

Any connected homogeneous graph (δ = 2).
Random bipartite graph (δ = 3).
Regular tree δ =∞
Urysohn graph, bounded Urysohn graph (any δ).
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Definition
A connected graph Γ is metrically homogeneous if it is
homogeneous when viewed as a metric space in the graph
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Some classification theorems

Diameter 2: Lachlan/Woodrow 1980
Diameter 3: Amato/Cherlin/Macpherson, preprint (78
pp.)
non-generic type: finite or tree-like
(Cameron,Macpherson,Ch2011)

Definition (Generic type)
The neighbors of a vertex form a random graph, a
Henson graph, or an infinite independent set; and
Definitely not a tree (girth at most 4 . . . )
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Metric Twists

Theorem (Bannai/Bannai, Gardiner, 1980)
If a finite distance transitive graph of diameter δ and degree
at least 3 is distance transitive with respect to two edge
relations, then the distances are permuted according to one
of four permutations ρ, ρ−1, τ0, τ1 of the set [δ].

Definition

ρ: double the small distances up to δ/2 and then work
your way back down.
τε: interchange i with its “reflection” (δ + ε− i) for
i ≤ δ/2 odd.

The twists τε have order 2.
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Theorem (Bannai/Bannai, Gardiner, 1980)
If a finite distance transitive graph of diameter δ and degree
at least 3 is distance transitive with respect to two edge
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Definition

ρ: double the small distances up to δ/2 and then work
your way back down.
τε: interchange i with its “reflection” (δ + ε− i) for
i ≤ δ/2 odd.

The twists τε have order 2.



Splitting
Twisted

Automorphism
Groups

Gregory
Cherlin

and Rebecca
Coulson

Twisted Auto-
morphisms

Random Edge
Colorings

Twists of
metrically
homogeneous
graphs

Lifting
involutions

Metric Twists, revisited

Theorem (Rebecca Coulson, 2019)
If there is a twisted isomorphism with a non-trivial twist
between two metrically homogeneous graphs of diameter δ
and generic type, then δ is finite and the distances are
permuted according to one of the four permutations ρ, ρ−1,
τ0, τ1.

Problem
Does this generalize to arbitrary distance transitive graphs?
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Does this generalize to arbitrary distance transitive graphs?
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Outer automorphisms

Theorem
If the outer automorphism group of a metrically
homogeneous graph of generic type is non-trivial it is
generated by τ0 or τ1.

Problem
When does τε lift?
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Outer automorphisms

Theorem
If the outer automorphism group of a metrically
homogeneous graph of generic type is non-trivial it is
generated by τ0 or τ1.

Problem
When does τε lift?
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Self-dual metrically homogeneous graphs

Theorem
The τ0-self-dual metrically homogeneous graphs given by
constraints on triangles are the following.

Generic bipartite antipodal
Generic nearly bipartite antipodal (odd cycles appear
first at length 2bδ/2c+ 1).

With few exceptions, the τ1-self-dual metrically
homogeneous graphs given by constraints on triangles have
a somewhat similar description.

Antipodal: involutory symmetry at maximal distance.
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Self-dual metrically homogeneous graphs

Theorem
The τ0-self-dual metrically homogeneous graphs given by
constraints on triangles are the following.

Generic bipartite antipodal
Generic nearly bipartite antipodal (odd cycles appear
first at length 2bδ/2c+ 1).
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Splitting Theorem

Theorem
Let Γ be one of the known metrically homogeneous graphs
of generic type which is τ -self-dual (τ = τε). Then τ lifts to
an involutory twisted automorphism of Γ if and only if the
midpoint or midpoints of the reflected interval in [δ] are fixed.

Concretely:

δ + ε 6≡ 3 (mod 4)
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The construction

Strategy: This time, build the automorphism and structure at
the same time.

Midpoint set F .
Generic automorphism α of order 2 subject to

d(x , xα) ∈ F

Check amalgamation.

Question
Can one use the Prague “magic semigroup” to simplify the
calculations?
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Why fixed points in the middle?

α involutory twisted automorphism with twist τ

Suppose midpoints K1,K2 are interchanged
(δ + ε ≡ 3 (mod 4)).
Look at the values

D = {d(x , x ,α ) | x 6= xα}
= D0 ∪ D1 (small/large values, with a gap)

D0,D1 are both non-empty.
∃ x1, x2 at distance 2 with d(xi , xα

i ) = Ki + (−1)i

∃ a at distance 1 from x1, x2 and at distance K1,K2 from
xα

1 , xα
2 respectively.

d(aα, x1) = K2 d(aα, x2) = K1

d(a,aα) ∈ [K2 − 1,K1 + 1] (contradiction)
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Λ-ultrametric spaces

Definition
If Λ is a finite distributive lattice then there is a generic
generalized ultrametric space UΛ with values in Λ.

The outer automorphism group of UΛ is

Aut(Λ)

This can be any finite group.
When does this split?
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involutions

Summing up

1 What are the relations in general between the following
conditions in the binary homogeneous case (or replace
2 by any prime)?

Splitting the twisted automorphism group.
Lifting involutions.
Structure of fixed point sets for involutions.

2 Is there a general theory connecting fixed points of
twists and some notion of generic automorphism?
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