Gregory Cherlin formerly of

Rutgers The State University of New Jersey

1/7, or possibly 7/1¹ Problem Session, Oberwolfach

¹— BW ☺

Concrete classification problems for ternary languages

! Homogeneous hypertournaments

? Homogeneous families of linear orders Some examples and some questions.

(Slightly fuller version in "TernaryProblems")

-Hypertournaments

1 Hypertournaments

2 Families of Linear Orderings

-Hypertournaments

t-hypertournaments

Definition

t-ary, antisymmetric (exactly Alt_t-symmetric).

Hypertournaments

The classification problem

Problem

Finitely many (boundedly many?) homogeneous t-hypertournaments for each t?

Known for t = 2 and possible only because there is a unique *t*-type up to symmetry (no Henson construction).

Problem

For $t \ge 3$, are there any infinite ones which are not (t + 1)-constrained?

(One for t = 2.)

Hypertournaments

Even hypertournaments

Definition

t odd:

Parity of a *t*-hypertournament on a (t + 1)-set: well-defined (take a linear order and count increasing *t*-tuples which are hyperarcs).

Even: All parities on (t + 1)-sets are even.

Proposition

An even homogeneous t-hypertournament (so, t odd) restricts to a homogeneous (t - 1)-hypertournament, and is determined by the latter.

Hypertournaments

The case t = 3: Catalog

There is a unique homogeneous *t*-hypertournament H_{t+1} of order t + 1, $Aut(H_{t+1}) = Alt_{t+1}$. Three 4-types: H_4 , C_4 (circular order), O_4 (odd).

Proposition

A homogeneous 3-hypertournament has one of the following forms.

- Finite, order 1, 2, 4, 8 (trivial; H₄; A(1, 𝔽₈) (W. Kantor, 1972).
- Generic cyclic order, realizes only type C₄.
- Generic even 3-hypertournament, omits O₄.
- Realizes C₄, O₄, omits H₄. [Generic exists—any others?]
- Realizes all 4-types [Generic exists—any others?]

- Families of Linear Orderings

2 Families of Linear Orderings

Families of Linear Orderings

Homogeneous FLO

Definition

FLO: (A, R(x, y, z)): *R* irreflexive relation; $R(a, x, y) = <_a$ linear on $A \setminus \{a\}$ and not derived from a constant order on *A*.

This seems like a class worth working out the Ramsey theory for, for any examples one can come up with, whether or not one has chances for a real classification. In any case the first step is to work out the "natural" examples and even this is not done systematically.

Unfortunate Proposition

There are 2^{\aleph_0} homogeneous *FLO*.

Families of Linear Orderings

Construction of 2^{№0} homogeneous FLOs

Control the cyclic part of the relation.

- Build an infinite antichain of irreducible cyclic structures contained in FLOs
- Amalgamate without introducing new irreducible cyclic structures.

Antichain: derived from cyclic orders on at least 5 points by replacing triples x < y < z with x, y, z consecutive by x, z, y. Amalgamation: $A_0 \subseteq A_0 \cup \{a_1\}, A_0 \cup \{a_2\}$: make $A_0 <_{a_1} a_2$ and $A_0 <_{a_2} a_1$.

Families of Linear Orderings

Problem

How many homogeneous FLOs are there with trivial cyclic part?

Problem

What exactly are the 4-constrained homogeneous FLO's?