Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

Structure / Nonstructure in Finite Model Theory

Gregory Cherlin

RUTGERS

ASL Annual Meeting UCB March 25 (2:40–3:10) Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO Universa in fact, my friend, it's not safe to make thin cuts; it's safer to go along cutting through the middle of things, and that way one will be more likely to encounter real classes. ... whenever there is a class of anything, it is necessarily also a part of whatever it is called a class of, but it is not at all necessary that a part is a class.

Plato, *Statesman* (C. J. Rowe trans.), lines 262b and 263b in Stephanus.

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

Tameness problems for classes of finite structures

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

Tameness problems for classes of finite structures

- $\mathcal{Q}:$ a class of finite structures with an embedding relation \leq
- \mathbb{P} : a property of subsets of \mathcal{Q}
- $C \subseteq Q$ a set of constraints
- $\mathcal{Q}_{\mathsf{C}}: \{ q \in \mathcal{Q} : c \not\leq q \ (c \in \mathsf{C}) \}$

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

Tameness problems for classes of finite structures

- \mathcal{Q} : a class of finite structures with an embedding relation \leq
- \mathbb{P} : a property of subsets of \mathcal{Q}
- $C \subseteq Q$ a set of constraints
- $\mathcal{Q}_{\mathsf{C}}: \{ q \in \mathcal{Q} : c \not\leq q \ (c \in \mathsf{C}) \}$

Problem $(\mathcal{Q}, \mathbb{P}, \mathbf{C})$: $\mathbb{P}(\mathcal{Q}_{\mathbf{C}})$?

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

Tameness problems for classes of finite structures

- $\mathcal{Q}:$ a class of finite structures with an embedding relation \leq
- \mathbb{P} : a property of subsets of \mathcal{Q}
- $C \subseteq Q$ a set of constraints
- $\mathcal{Q}_{\mathsf{C}}: \{ q \in \mathcal{Q} : c \not\leq q \ (c \in \mathsf{C}) \}$

Problem $(\mathcal{Q}, \mathbb{P}, \mathbf{C})$: $\mathbb{P}(\mathcal{Q}_{\mathbf{C}})$?

Problem $(\mathcal{Q}, \mathbb{P})$: $C \mapsto$ answer (for C finite).

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

Tameness problems for classes of finite structures

- $\mathcal{Q}:$ a class of finite structures with an embedding relation \leq
- \mathbb{P} : a property of subsets of \mathcal{Q}
- $C \subseteq Q$ a set of constraints
- $\mathcal{Q}_{\mathsf{C}}: \{ q \in \mathcal{Q} : c \not\leq q \ (c \in \mathsf{C}) \}$

Problem (Q, \mathbb{P}, C) : $\mathbb{P}(Q_C)$? Problem (Q, \mathbb{P}) : $C \mapsto$ answer (for C finite). *Two cases of interest:*

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

Tameness problems for classes of finite structures

- $\mathcal{Q}:$ a class of finite structures with an embedding relation \leq
- \mathbb{P} : a property of subsets of \mathcal{Q}
- $C \subseteq Q$ a set of constraints
- $\mathcal{Q}_{\mathsf{C}}: \{ q \in \mathcal{Q} : c \not\leq q \ (c \in \mathsf{C}) \}$

Problem $(\mathcal{Q}, \mathbb{P}, \mathbf{C})$: $\mathbb{P}(\mathcal{Q}_{\mathbf{C}})$?

Problem $(\mathcal{Q}, \mathbb{P})$: $C \mapsto$ answer (for C finite).

Two cases of interest:

• $\mathbb{P} = WQO$: No infinite antichain

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

Tameness problems for classes of finite structures

- $\mathcal{Q}:$ a class of finite structures with an embedding relation \leq
- \mathbb{P} : a property of subsets of \mathcal{Q}
- $C \subseteq Q$ a set of constraints
- $\mathcal{Q}_{\mathsf{C}}: \{ q \in \mathcal{Q} : c \not\leq q \ (c \in \mathsf{C}) \}$

Problem $(\mathcal{Q}, \mathbb{P}, \mathbf{C})$: $\mathbb{P}(\mathcal{Q}_{\mathbf{C}})$?

Problem $(\mathcal{Q}, \mathbb{P})$: $C \mapsto$ answer (for C finite).

Two cases of interest:

- $\mathbb{P} = WQO$: No infinite antichain
- Universality: The class has a universal countable limit.

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

I WQO

- Worst case scenario
- A Finiteness Theorem
- Concrete Cases

II Universality

- Beyond the pale
- Within the pale

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

. . .

2 Universality

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

Theorem (Harvey Friedman)

There is a computable well-founded partial ordering \leq^* of \mathbb{N} for which the set

 $\{n \in \mathbb{N} : (\mathbb{N}, \leq^*)_n \text{ is WQO}\}$

is complete Π_1^1 .

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

Theorem (Harvey Friedman)

There is a computable well-founded partial ordering \leq^* of \mathbb{N} for which the set

 $\{n \in \mathbb{N} : (\mathbb{N}, \leq^*)_n \text{ is WQO}\}$

is complete Π_1^1 .

Construction: (\mathbb{N}, \leq_1) computably linearly ordered so that

 $\{n \in \mathbb{N} : (\mathbb{N}, \leq_1)_n \text{ is WO}\}$

is complete Π_1^1 .

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

Theorem (Harvey Friedman)

There is a computable well-founded partial ordering \leq^* of $\mathbb N$ for which the set

 $\{n \in \mathbb{N} : (\mathbb{N}, \leq^*)_n \text{ is WQO}\}$

is complete Π_1^1 .

Construction: (\mathbb{N}, \leq_1) computably linearly ordered so that

 $\{n \in \mathbb{N} : (\mathbb{N}, \leq_1)_n \text{ is WO}\}$

is complete Π_1^1 .

 $\leq^* = \leq \cap \leq_1$

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

Theorem (Harvey Friedman)

There is a computable well-founded partial ordering \leq^* of $\mathbb N$ for which the set

 $\{n \in \mathbb{N} : (\mathbb{N}, \leq^*)_n \text{ is WQO}\}$

is complete Π_1^1 .

Construction: (\mathbb{N}, \leq_1) computably linearly ordered so that

 $\{n \in \mathbb{N} : (\mathbb{N}, \leq_1)_n \text{ is WO}\}$

is complete Π_1^1 .

 $\leq^* = \leq \cap \leq_1$ — Then $(\mathbb{N}, \leq^*)_n$ is WQO iff $(\mathbb{N}, \leq_1)_n$ is WO

A Finiteness Theorem

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

. . .

Theorem (CL2000)

Let Q be a well-founded quasiorder and k fixed. Then there is a finite set Λ_k of infinite antichains such that:

 $\forall C \subseteq Q \text{ If } C \subseteq Q, |C| \leq k, \text{ and } Q_C \text{ is not } WQO,$

then there is an antichain $I \in \Lambda_k$ with $I \subseteq^* Q_C$.

A Finiteness Theorem

Theorem (CL2000)

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

Let $\mathcal Q$ be a well-founded quasiorder and k fixed. Then there

is a finite set Λ_k of infinite antichains such that:

 $\forall C \subseteq Q \text{ If } C \subseteq Q, |C| \leq k, \text{ and } Q_C \text{ is not } WQO,$

then there is an antichain $I \in \Lambda_k$ with $I \subseteq^* Q_C$.

Idea (Nash-Williams): Use *I* such that $Q^{\leq l} = \{q : q \leq a \text{ lmost all } a \in I\}$ is WQO.

A Finiteness Theorem

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

Theorem (CL2000)

Let Q be a well-founded quasiorder and k fixed. Then there is a finite set Λ_k of infinite antichains such that:

 $\forall C \subseteq Q \text{ If } C \subseteq Q, |C| \leq k, \text{ and } Q_C \text{ is not } WQO,$

then there is an antichain $I \in \Lambda_k$ with $I \subseteq^* Q_C$.

Idea (Nash-Williams): Use *I* such that $Q^{<<I} = \{q : q \le a \text{lmost all } a \in I\}$ is WQO. *Construction:*

$$\Lambda_{k+1} = \Lambda_k \cup \bigcup_{I_1, \dots, I_{k+1} \in \Lambda_k} \{ I_{\mathbf{C}} : \text{critical } \mathbf{C} \text{ in } \prod_i \mathcal{Q}^{<< I_i} \}$$

	Тороlogy
Structure / Nonstructure in Finite Model Theory	
Gregory Cherlin	
WQO	
Universality	

Topology

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

Favorable Case:

Points $Q^{<<1}$.

Isolated points are dense;

Open sets Q_C with C finite.

• Isolated points are effectively given ($Q^{<<1}$ decidable).

Topology

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Open sets Q_C with *C* finite. Points $Q^{<<l}$.

Favorable Case:

- Isolated points are dense;
- Isolated points are effectively given ($Q^{<<1}$ decidable).

Question: Does this happen in the cases of interest?

Topology

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Open sets Q_C with *C* finite. Points $Q^{<<l}$.

Favorable Case:

- Isolated points are dense;
- Isolated points are effectively given ($Q^{<<1}$ decidable).

Question: Does this happen in the cases of interest? (Yes in one simple case: vertex colored paths)

	Cases of Interest: Graphs
Structure / Nonstructure in Finite Model Theory	
Gregory Cherlin	 Graphs with forbidden subgraphs:
WQO	
Universality	

Cases of Interest: Graphs

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

- Graphs with forbidden subgraphs:
- G. Ding 1992: I_0 =cycles, I_1 =bridges

$$\Lambda = \{I_0\}$$

the unique isolated point.

Cases of Interest: Graphs

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

• Graphs with forbidden subgraphs:

G. Ding 1992: I_0 =cycles, I_1 =bridges

$$\Lambda = \{I_0\}$$

the unique isolated point.

• Graphs with forbidden induced subgraphs: Unclear . . .

Cases of Interest: Tournaments

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

• Tournaments:

$$\Lambda_1 = \{I_1, I_2\}: I_1 = \{N_{1,n,D} : n \ge 7\}, I_2 = \{N_{2,2n+1,H} : n \ge 4\}.$$

 $N_{k,n}$: Linear of order *n*, but with successors and edges (i, j) with $i \equiv j \mod k$ reversed.

 $N_{k,kn+1,D}$ or $N_{k,kn,H}$: "mark" the ends (1 or 2 marker vertices)

Cases of Interest: Tournaments

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

...

• Tournaments:

 $\Lambda_1 = \{I_1, I_2\}: I_1 = \{N_{1,n,D} : n \ge 7\}, I_2 = \{N_{2,2n+1,H} : n \ge 4\}.$

 $N_{k,n}$: Linear of order *n*, but with successors and edges (i, j) with $i \equiv j \mod k$ reversed.

 $N_{k,kn+1,D}$ or $N_{k,kn,H}$: "mark" the ends (1 or 2 marker vertices)

Theorem (Latka)

A set of finite tournaments determined by one "forbidden tournament" is wqo iff the infinite antichains I_1 , I_2 are incompatible with the constraint.

Proof: tree decompositions and Kruskal's Lemma.

Cases of Interest: Tournaments

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• Tournaments:

$$\Lambda_1 = \{I_1, I_2\}: \ I_1 = \{N_{1,n,D}: n \geq 7\}, \ I_2 = \{N_{2,2n+1,H}: n \geq 4\}.$$

Theorem (Latka)

A set of finite tournaments determined by one "forbidden tournament" is wqo iff the infinite antichains I_1 , I_2 are incompatible with the constraint.

Proof: tree decompositions and Kruskal's Lemma.

Corollary

The WQO problem for classes of tournaments determined by at most two forbidden tournaments is (p-time) decidable.

Remark. No actual bound on the degree of the polynomial

. . .

Cases of Interest: Pattern Classes

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

• Pattern Classes of Permutations

Theorem (Knuth, 1969)

The permutations which can be sorted using a stack are those omitting the pattern (231) and their number is given by the Catalan numbers (cf. Macmahon 1915).

Cases of Interest: Pattern Classes

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• Pattern Classes of Permutations

Theorem (Knuth, 1969)

The permutations which can be sorted using a stack are those omitting the pattern (231) and their number is given by the Catalan numbers (cf. Macmahon 1915).

Themes:

- Characterize permutations sortable by variations on stacks
- Algorithmic problems for such classes of permutations
- Rates of growth for the the numbers of such permutations
- WQO (Antichains)

Tournaments: Infinite Antichains

Tournaments: Infinite Antichains

 $|\Lambda_1| = 3$ [Atkinson/Murphy/Ruškuc 2002]

Tournaments: Infinite Antichains

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

- - -

12

 $|\Lambda_1| = 3$ [Atkinson/Murphy/Ruškuc 2002]

References:

An antichain:

N. Ruškuc, "Decidability questions for pattern avoidance classes of permutations," in *Third International Conference on Permutation Patterns, Gainesville, Fla., 2005* S. Waton, *On Permutation Classes Defined by Token Passing Networks, Gridding Matrices, and Pictures: Three Flavours of Involvement*, Ph.D. Thesis, St. Andrews, 2007

The Main Question

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

Once more:

Q: Finite relational structures with signature σ (with symmetry conditions).

- Isolated points are dense?
- Isolated points are effectively given (Q^{<<1} decidable)?

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

. . . .

WQO

2 Universality

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

. . .

 (Q, \leq) : weak substructure.

Property P: existence of a universal countable limit

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

. . .

 (Q, \leq) : weak substructure.

Property \mathbb{P} : existence of a universal countable *limit* (?) When does a finite set of forbidden structures allow a universal structure?

<u>Universality</u>

Structure / Nonstructure in Finite Model Theory

Universality

 (\mathcal{Q}, \leq) : weak substructure.

Property \mathbb{P} : existence of a universal countable *limit* (?) When does a finite set of forbidden structures allow a universal structure?

Examples (Graphs)

- Forbid K_n (Henson via Fraissé)
- C a set of cycles: forbid odd cycles up to some fixed size (CSS, 1999)

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

 (Q, \leq) : weak substructure.

Property \mathbb{P} : existence of a universal countable *limit* (?) When does a finite set of forbidden structures allow a universal structure?

Theorem

With forbidden induced subgraphs this question is undecidable

(which is to be expected)

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

 (Q, \leq) : weak substructure.

Property \mathbb{P} : existence of a universal countable *limit* (?) When does a finite set of forbidden structures allow a universal structure?

Theorem

With forbidden induced subgraphs this question is undecidable

(which is to be expected);

Theorem

with forbidden weak substructures, there is a good theory.

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

 (Q, \leq) : weak substructure.

Property \mathbb{P} : existence of a universal countable *limit* (?) When does a finite set of forbidden structures allow a universal structure?

Theorem

With forbidden induced subgraphs this question is undecidable;

Theorem

with forbidden weak substructures, there is a good theory.

... why the difference? ...

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

. . .

Tiling Problems 0-1 tilings

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

. . . .

Tiling Problems 0-1 tilings

Structurally, these are models of the form (\mathbb{Z}, S, R) with S the successor function and R a binary relation.

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

Tiling Problems 0-1 tilings

Structurally, these are models of the form (\mathbb{Z}, S, R) with *S* the successor function and *R* a binary relation.

When there is a tiling then some further decoration of \mathbb{Z}^2 gives 2^{\aleph_0} countable variations, and no universal structure.

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

Tiling Problems 0-1 tilings

Structurally, these are models of the form (\mathbb{Z}, S, R) with S the successor function and R a binary relation.

When there is a tiling then some further decoration of \mathbb{Z}^2 gives 2^{\aleph_0} countable variations, and no universal structure.

When there is no tiling then there is a bound on the sizes of connected components, and there is a universal homogeneous structure.

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

Tiling Problems 0-1 tilings

Structurally, these are models of the form (\mathbb{Z}, S, R) with S the successor function and R a binary relation.

When there is a tiling then some further decoration of \mathbb{Z}^2 gives 2^{\aleph_0} countable variations, and no universal structure.

When there is no tiling then there is a bound on the sizes of connected components, and there is a universal homogeneous structure.

To forbid a pattern places a condition on induced subgraphs.

Structural Analysis

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

Algebraic Closure

 $acl_C(A)$: e.g., if you bound the vertex degree by forbidding a star, then the algebraic closure of a point is its connected component.

Structural Analysis

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

Algebraic Closure

 $acl_C(A)$: e.g., if you bound the vertex degree by forbidding a star, then the algebraic closure of a point is its connected component.

Theorem

If the algebraic closure operator is locally finite then the model completion of the theory of C-free graphs is \aleph_0 -categorical (and its model is universal).

Other tameness conditions

Structure / Nonstructure in Finite Mode Theory
Gregory Cherlin
WQO

Other tameness conditions

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

Universality

• • •

Number of models

Other tameness conditions

Structure / Nonstructure in Finite Model Theory

> Gregory Cherlin

WQO

...

- Number of models
- Stability and its kin (for the associated theory).

Question

Is stability (and so on) a decidable property, as a function of the constraint set C? Is this combinatorially interesting (or robust) at the finite level?