Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamatior Classification Open Problems

Classification of Homogeneous Combinatorial Structures

Gregory Cherlin

Leeds, July 19

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamatio Classification Open Problems

Amalgamation

Classification

Open Problems

Homogeneity

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Amalgamation Classification Open Problems

Definition

A structure is homogeneous iff every isomorphism between f.g. substructures is induced by an automorphism.

Homogeneity

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification Open

Definition

A structure is homogeneous iff every isomorphism between f.g. substructures is induced by an automorphism.

Examples

- (ℚ, <)
- A regular tree, as a metric space.
- The random graph

Regular trees as metric spaces

Classification of Homogeneous Combinatorial Structures

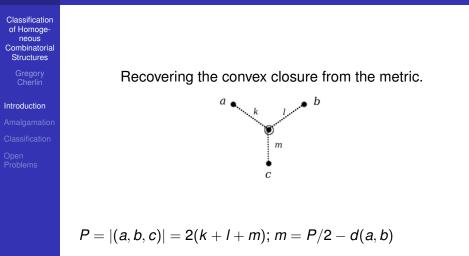
> Gregory Cherlin

Introduction

Amalgamatio Classification

Open Problems Recovering the convex closure from the metric.

Regular trees as metric spaces



Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Amalgamation Classification Alice's Restaurant Axioms $\forall x_1, \ldots, x_n$ You can get anything you want

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification Open Problems

Alice's Restaurant Axioms $\forall x_1, \dots, x_n$ You can get anything you want

Remark

Truth With probability 1, these axioms are true;

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification

Open Problems

Alice's Restaurant Axioms $\forall x_1, \ldots, x_n$ You can get anything you want

Remark

Truth With probability 1, these axioms are true; Consequences Any finite partial isomorphism between two countable models extends to an isomorphism.

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamati

Classification Open Problems

Alice's Restaurant Axioms $\forall x_1, \ldots, x_n$ You can get anything you want

Remark

Truth With probability 1, these axioms are true; Consequences Any finite partial isomorphism between two countable models extends to an isomorphism. Hence: Uniqueness and Homogeneity

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification Open

Alice's Restaurant Axioms $\forall x_1, \ldots, x_n$ You can get anything you want

Remark

Truth With probability 1, these axioms are true; Consequences Any finite partial isomorphism between two countable models extends to an isomorphism.

Hence: Uniqueness and Homogeneity

Corollary (0-1 law; Fagin76, GKLT69)

Any first order property of graphs has asymptotic probability 0 or 1 in large random graphs.

Classifications

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Amalgamation Classification Finite homogeneous for a finite relational language (Lachlan): finitely many families, each consisting of approximations to an infinite limit;

• Some binary relational structures (ad hoc)

Classifications

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Classification

Open Problems

- Finite homogeneous for a finite relational language (Lachlan): finitely many families, each consisting of approximations to an infinite limit;
 - Some binary relational structures (ad hoc)

Method	Example	Reference
Structural	Colored	T. de Sousa/Truss
Analysis	P. O.	2008
"	Permutation patterns	Cameron 2002
Artful	Graphs	Lachlan/Woodrow
Induction		1980
Ramsey Method	Tournaments	Lachlan 1984
"	Directed graphs	Cherlin 1998

Classifications

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Classification

Open Problems

- Finite homogeneous for a finite relational language (Lachlan): finitely many families, each consisting of approximations to an infinite limit;
 - Some binary relational structures (ad hoc)

Method	Example	Reference
Structural	Colored	T. de Sousa/Truss
Analysis	P. O.	2008
"	Permutation patterns	Cameron 2002
Artful	Graphs	Lachlan/Woodrow
Induction		1980
Ramsey Method	Tournaments	Lachlan 1984
"	Directed graphs	Cherlin 1998

Some Open Cases

- metrically homogeneous graphs (Cameron, 1998)
- k-dimensional permutation patterns (Cameron, 2002)

"Sporadic" finite structures

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

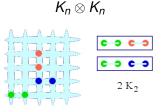
Introduction

Amalgamation Classification Open

Theorem (Sheehan 74, Gardiner 76)

The finite homogeneous graphs are:

- *m* · *K_n* and its complement;
- The pentagon C₅;
- The "grid" $K_3 \otimes K_3 = L[K_{3,3}]$



Grids and Cycles

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Amalgamation Classification

Open Problems

Varying the language (Lachlan's theory).

Grids and Cycles

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification Open Problems Varying the language (Lachlan's theory).

The graphs $K_n \otimes K_n$ are homogeneous relative to the 4-place parallelism relation, and occur as a family at that level of Lachlan's classification.

Grids and Cycles

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification Open Problems Varying the language (Lachlan's theory).

The graphs $K_n \otimes K_n$ are homogeneous relative to the 4-place parallelism relation, and occur as a family at that level of Lachlan's classification.

On the other hand, the *n*-cycles C_n remain sporadic forever. They are metrically homogeneous but the number of binary relations involved is unbounded.

The finite primitive case

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamatic

Open Problems

Question

Can one classify the finite primitive structures homogeneous for a language of bounded arity?

The binary case: (known examples)

- Equality;
- C_n , or \vec{C}_n ;
- $[\mathbb{F}_{q^2} \cdot \ker(N)] \cdot \langle \mathsf{Fr}_q \rangle$

(O'Nan-Scott-Aschbacher?-cf. Saracino 1996-7)

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification Open Problems

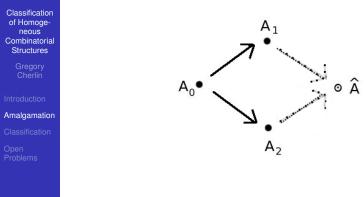
Introduction

2 Amalgamation

Classification

Open Problems

The amalgamation property



The amalgamation property

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Amalgamation

Classification

Open Problems

Remark (Fraïssé)

If Γ is a homogeneous structure then the category $\operatorname{Sub}(\Gamma)$ of f.g. substructures has the amalgamation property and joint embedding.

The amalgamation property

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

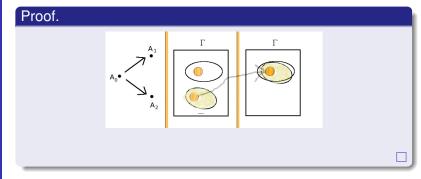
Introduction

Amalgamation

Classification Open Problems

Remark (Fraïssé)

If Γ is a homogeneous structure then the category $\operatorname{Sub}(\Gamma)$ of f.g. substructures has the amalgamation property and joint embedding.



There is a converse ...

The Fraïssé limit

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Amalgamation

Classification

Open Problems

Definition (Amalgamation Class)

A set ${\mathcal A}$ of f.g. structures is an amalgamation class if

- It is closed under isomorphism and substructure;
- It has the joint embedding and amalgamation properties

The Fraïssé limit

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Amalgamation

Classification Open Problems

Definition (Amalgamation Class)

A set \mathcal{A} of f.g. structures is an amalgamation class if

- It is closed under isomorphism and substructure;
- It has the joint embedding and amalgamation properties

Theorem (Fraïssé)

If A is an amalgamation class with countably many isomorphism types then there is a unique countable homogeneous structure Γ with $Sub(\Gamma) = A$

The Fraïssé limit

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Amalgamation

Classification Open Problems

Definition (Amalgamation Class)

A set ${\mathcal A}$ of f.g. structures is an amalgamation class if

- It is closed under isomorphism and substructure;
- It has the joint embedding and amalgamation properties

Theorem (Fraïssé)

If A is an amalgamation class with countably many isomorphism types then there is a unique countable homogeneous structure Γ with $Sub(\Gamma) = A$

Example

 $(\mathbb{Q},<)$ is the Fraïssé limit of the class $\mathcal L$ of finite linear orders.

Examples

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introductior

Amalgamation

Classification

Open Problems

- The generic partial order ${\cal P}$
- The generic K_n -free graph Γ_n [Henson 71]
- The generic T-free directed graph [Henson 72]
- The rational Urysohn space \mathbb{U}_0 [Urysohn 1924]

Examples

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation

Classification Open Problems

- $\bullet\,$ The generic partial order ${\cal P}\,$
- The generic K_n -free graph Γ_n [Henson 71]
- The generic T-free directed graph [Henson 72]
- The rational Urysohn space \mathbb{U}_0 [Urysohn 1924]

Fréchet's problem: is there a universal separable complete metric space?

Urysohn: Let $\mathbb U$ be the completion of the rational Urysohn space $\mathbb U_0.$

... in addition [it] satisfies a quite powerful condition of homogeneity: the latter being, that it is possible to map the whole space onto itself (isometrically) so as to carry an arbitrary finite set M into an equally arbitrary set M_1 , congruent to the set M. Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamatior Classification

Open Problems

Introduction

Amalgamation

3 Classification

Colored partial orders

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification

Open Problems

Theorem (Schmerl 1979)

A nontrivial homogeneous partial order is either a composition $I_n[\mathbb{Q}]$ or $\mathbb{Q}[I_n]$, or the generic partial order \mathcal{P} .

Theorem (Torrezão de Sousa, Truss 2008)

A homogeneous countably vertex colored partial order is built from generically colored components by assembly along a skeleton, which is a countable partial order with labels on edges indicating the isomorphism type of each pair of components.

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

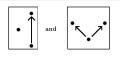
Amalgamatior

Classification

Open Problems

Lemma

If a homogeneous partial order contains



then it contains all finite partial orders.

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

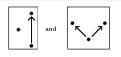
Amalgamatior

Classification

Open Problems

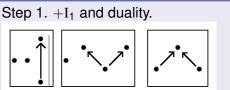
Lemma

If a homogeneous partial order contains



then it contains all finite partial orders.

Proof.



Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

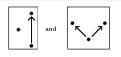
Amalgamatior

Classification

Open Problems

Lemma

If a homogeneous partial order contains



then it contains all finite partial orders.

Proof.

Step 2. Fan-in and fan-out.

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introductior

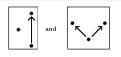
Amalgamatior

Classification

Open Problems

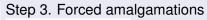
Lemma

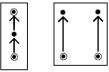
If a homogeneous partial order contains



then it contains all finite partial orders.

Proof.





Explicit Amalgamation

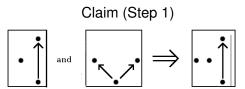
Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Classification

Open Problems



Explicit Amalgamation

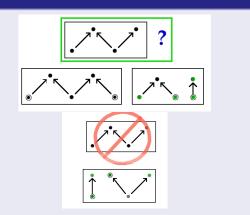
Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification Open

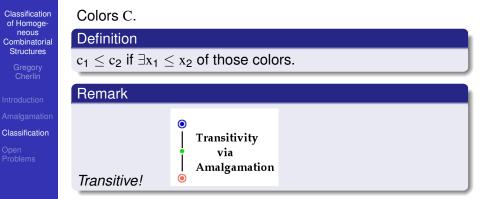


Proof.



P.O. with vertex colors

P.O. with vertex colors



 $c \sim c' {:} \ c \leq c' \leq c ; C/ \sim$ is a partially ordered set.

P.O. with vertex colors

Classification of Homoge-	Colors C.	
neous Combinatorial Structures Gregory Cherlin	Definition	
	$c_1 \leq c_2 \text{ if } \exists x_1 \leq x_2 \text{ of those colors.}$	
Introduction	Remark	
Amalgamation		•
Classification		Transitivity
Open Problems		via Amalgamation
	Transitive!	•

The components of Γ are the vertices whose colors belong to a fixed color class.

Lemma (1 Component)

The components are generically colored homogeneous partial orders.

Homogeneous Permutation Patterns

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification

Open Problems

Definition

A permutation is a structure consisting of two linear orders.

The isomorphism types are the permutation patterns.

Theorem (Cameron 2002)

The nontrivial primitive homogeneous permutations are

•
$$I(<_2=<_1)$$
 and $I^{op}(<_2=<_1^{op})$; or

• Generic.

The imprimitive homogeneous permutations are compositions of primitive ones: $I[I^{op}]$, $I^{op}[I]$

(Main Lemma)

If a homogeneous permutation contains all permutation patterns of order 3, then it contains all patterns.

Homogeneous graphs

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation

Open Problems

Theorem (Lachlan/Woodrow 1980)

The homogeneous graphs are as follows:

- C_5 and $K_3 \otimes K_3$
- $I_m[K_n]$ and $K_n[I_m]$ (compositions)
- The generic K_n -free graph Γ_n , or its complement;
- The random graph Γ_∞

Reduction: w.l.o.g. Γ contains I_{∞} , $I_1 \oplus K_2$, P_2 . Target: Some Γ_n ($n \le \infty$).

(Alice's Restaurant Lemma)

If the "generators" $I_\infty,\,I_1+K_2,\,P_2$ occur as well as $K_n,$ then any finite graph omitting K_{n+1} occurs.

Induction fails

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification

Open Problems
$$\begin{split} |A| &= k.\\ a \in A, (a,b) \text{ an edge, } (a,b') \text{ a nonedge. } A_1 &= A \setminus \{a,b\},\\ A_2 &= A \setminus \{a,b'\}.\\ B &= A_1 \oplus A_2. \text{ Amalgamating } B \cup \{a\} \text{ with } B \cup \{b^*\} \text{ will force } A. \end{split}$$

Induction fails

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification

Open Problems
$$\begin{split} |A| &= k.\\ a \in A, (a, b) \text{ an edge, } (a, b') \text{ a nonedge. } A_1 &= A \setminus \{a, b\},\\ A_2 &= A \setminus \{a, b'\}.\\ B &= A_1 \oplus A_2. \text{ Amalgamating } B \cup \{a\} \text{ with } B \cup \{b^*\} \text{ will force } A.\\ A_1 &= A_1 \oplus A_2 \text{ or } b^*\\ A_2 &= b^* \end{split}$$

Factors:

Induction fails

 $A_2 = A \setminus \{a, b'\}.$

|A| = k.

Classification of Homogeneous Combinatorial Structures

Classification

 $B = A_1 \oplus A_2$. Amalgamating $B \cup \{a\}$ with $B \cup \{b^*\}$ will force Α. A_1 A_1 **●** b* a 💿 A_2 A 2

 $a \in A$, (a, b) an edge, (a, b') a nonedge. $A_1 = A \setminus \{a, b\}$,

How can we make this work?

Factors:

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Amalgamatio

Classification

Open Problems

(Main Lemma')

For any finite A omitting K_{n+1}

If H is a consequence of the generators and $a \in A$, $a' \in H$ then the almost disjoint sum $A \oplus_{a=a'} H$ is a consequence of the generators.

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Amalgamatior

Classification

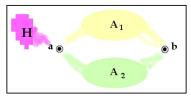
Open Problems

(Main Lemma')

For any finite A omitting K_{n+1}

If H is a consequence of the generators and $a \in A$, $a' \in H$ then the almost disjoint sum $A \oplus_{a=a'} H$ is a consequence of the generators.

Now the amalgamation looks like this:



Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Amalgamatior

Classification

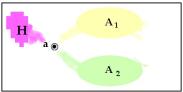
Open Problems

(Main Lemma')

For any finite A omitting K_{n+1}

If H is a consequence of the generators and $a \in A$, $a' \in H$ then the almost disjoint sum $A \oplus_{a=a'} H$ is a consequence of the generators.

Main Factor:



Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Amalgamatior

Classification

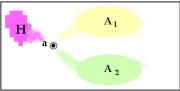
Open Problems

(Main Lemma')

For any finite A omitting K_{n+1}

If H is a consequence of the generators and $a \in A$, $a' \in H$ then the almost disjoint sum $A \oplus_{a=a'} H$ is a consequence of the generators.

Main Factor:



$$\begin{split} H \implies (A_2 \oplus_a H) \implies A_1 \oplus_a (A_2 \oplus_a H) \text{ (by induction)} \\ \text{2nd factor: disjoint union. Explicit amalgamation arguments} \end{split}$$

Explicit Amalgamation Arguments

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification

Open Problems

Question (Main Classification Problem—Lachlan)

Given finitely many positive constraints A_1, \ldots, A_k and negative constraints B_1, \ldots, B_ℓ , is there a homogeneous structure meeting the constraints?

Is this decidable?

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Amalgamatio

Classification

Open Problems A tournament is a local order if for each vertex v the left and right sides v⁻ and v⁺ are linear orders (transitive). The homogeneous local orders are L₁, \vec{C}_3 , \mathbb{Q} , and the generic local order \mathbb{Q}^* .

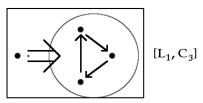
Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification A tournament is a local order if for each vertex v the left and right sides v^- and v^+ are linear orders (transitive). The homogeneous local orders are L_1 , \vec{C}_3 , \mathbb{Q} , and the generic local order \mathbb{Q}^* .

Theorem (Lachlan 1984)

The homogeneous tournaments are the homogeneous local orders and the generic tournament.



Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

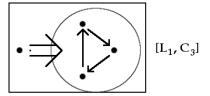
Classification

Open Problems

Theorem (Lachlan 1984)

The homogeneous tournaments are the homogeneous local orders and the generic tournament.

The "generator"
$$[L_1, \vec{C}_3]$$



(Main Lemma)

$$[L_1, \vec{C}_3] \implies \textit{Everything}$$

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification Open

(Main Lemma)

$$L_1, \vec{C}_3] \implies \textit{Everything}$$

Step 1. Duality: $[L_1, \vec{C}_3] \implies [\vec{C}_3, L_1]$ Tournaments omitting $[\vec{C}_3, \vec{C}_3, \vec{C$

Tournaments omitting $[\vec{C}_3, L_1]$ have the form [L, S] with L linear and S a local order. In the homogeneous case, T must be one or the other.

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification Open Problems

(Main Lemma)

$$L_1, \vec{C}_3] \implies \textit{Everything}$$

Step 1. Duality: $[L_1, \vec{C}_3] \implies [\vec{C}_3, L_1]$ Tournaments omitting $[\vec{C}_3, L_1]$ have the form [L, S] with L linear and S a local order. In the homogeneous case, T must be one or the other.

Step 2. Linear extensions

$$\mathcal{A}^* = \{ A : \mathsf{All} \ A \cup L \text{ lie in } \mathcal{A} \}$$

Lemma

 \mathcal{A}^* is an amalgamation class.

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification Open Problems

(Main Lemma)

$$L_1, \vec{C}_3] \implies \textit{Everything}$$

Step 1. Duality: $[L_1, \vec{C}_3] \implies [\vec{C}_3, L_1]$ Tournaments omitting $[\vec{C}_3, L_1]$ have the form [L, S] with L linear and S a local order. In the homogeneous case, T must be one or the other.

Step 2. Linear extensions

$$\mathcal{A}^* = \{ A : \mathsf{All} \ A \cup L \text{ lie in } \mathcal{A} \}$$

Lemma

 \mathcal{A}^* is an amalgamation class.

Therefore it suffices to prove: $[L_1, \vec{C}_3] \in \mathcal{A}^*.$

The Ramsey Argument

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification

Open Problems

Stacks: L[A] is a stack of A's.

Lemma

Assume every 1-point extension of a stack of A's is in \mathcal{A} . Then A is in \mathcal{A}^* .

Proof.

Amalgamate many 1-point extensions.

The Ramsey Argument

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification

Open Problems

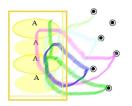
Stacks: L[A] is a stack of A's.

Lemma

Assume every 1-point extension of a stack of A's is in \mathcal{A} . Then A is in \mathcal{A}^* .

Proof.

Amalgamate many 1-point extensions.



Amalgamating over a stack

A copy of L will appear.

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction

Amalgamatio

Classification

Open Problems

Lemma

Any 1-point extension of a stack of \vec{C}_3 's is a consequence of $[L_1, \vec{C}_3]$.

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification

Open Problems

Lemma

Any 1-point extension of a stack of \vec{C}_3 's is a consequence of $[L_1, \vec{C}_3]$.

Proof.

Induction on the height of the stack. $A = \vec{C}_3$.

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification

Open Problems

Lemma

Any 1-point extension of a stack of \vec{C}_3 's is a consequence of $[L_1, \vec{C}_3]$.

Proof.

Induction on the height of the stack.

$$\mathbf{A} = \vec{\mathbf{C}}_{\mathbf{3}}.$$

 $\mathbb{T}=(A',A^p)$ is a partitioned tournament, homogeneous relative to the partition.

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation Classification Open

Lemma

Any 1-point extension of a stack of \vec{C}_3 's is a consequence of $[L_1, \vec{C}_3]$.

Proof.

Induction on the height of the stack.

$$A = \vec{C}_3.$$

 $\mathbb{T}=(A',A^p)$ is a partitioned tournament, homogeneous relative to the partition.

Final version: if $\mathbb{T}=(T_1,T_2)$ is an ample 2-tournament, and $A\subseteq T_1,\,A\simeq \vec{C}_3,$ then

 $(A'(T_1), A^p(T_2))$ is an ample 2-tournament.

[Finitized]

The Case of Directed Graphs

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation

Open Problems

Theorem

If Γ is a primitive homogeneous directed graph then Γ is one of the following.

- A tournament or independent set of vertices;
- A local partial order S(2), \mathcal{P} , or $\mathcal{P}(3)$.
- Γ_{I_n} or $\Gamma_{\mathcal{T}}$ (Henson digraphs).

Proof.

As for tournaments, allowing for some ambiguity in the Ramsey argument.

$$\label{eq:A} \begin{split} \mathcal{A}^r &= \{A: \text{Every r-Ramsey extension of } A \text{ lies in } \mathcal{A}\}. \\ \text{Instead of 1-point extensions of stacks of generators, we} \\ \text{use disjoint sums of generators.} \end{split}$$

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamatic Classificatior

Open Problems Introduction

Amalgamation

Classification

Some Classification Problems

- Classification of Homogeneous Combinatorial Structures
 - Gregory Cherlin
- Introduction Amalgamation Classification
- Open Problems

- Homogeneous k-dim. permutations $(<_1, \ldots, <_k)$. (Compositions of generic for $\leq k$ linear orders?)
- Finite primitive binary homogeneous structures (O'Nan-Scott-Aschbacher)
- Metrically Homogeneous Graphs.

Metrically Homogeneous Graphs

Classification of Homogeneous Combinatorial Structures

> Gregory Cherlin

Introduction Amalgamation

Classification

Open Problems The known metrically homogeneous graphs are of the following forms.

- Homogenous Graphs (Lachlan/Woodrow)
- The n-gon C_n , or an antipodal double of C_5 or $K_3 \otimes K_3$.
- Tree-like graphs $T_{r,s}$: r-fold branching of s-cliques.
- $\Gamma^{\delta}_{K,C,\mathcal{S}}$ where
- $-\delta$ is the diameter
- $K = (K_1, K_2)$ controls triangles of odd perimeter
- $C = (C_0, C_1)$ controls triangles of large perimeter ($\geq 2\delta$)
- ${\mathcal S}$ is a Henson-style constraint involving
 - $(1, \delta)$ -subspaces.
 - An antipodal variation of the previous example, $\Gamma_{a,n}^{\delta}$ omitting K_n and some related subgraphs.

The evidence for completeness is spotty, but this gives a clear target.