

Cherlin

[The Axiom](#page-1-0)

to make

[things simple](#page-59-0)

The Axiom of Choice

Gregory Cherlin

IMR Aug. 28, 2010

[The Axiom of](#page-0-0) Choice

Cherlin

[The Axiom](#page-1-0)

to make

[things simple](#page-59-0)

[Zorn's Lemma](#page-41-0)

- [AC makes things simple](#page-59-0)
- [AC makes things complicated](#page-87-0)
- **[Further Applications](#page-99-0)**
- **[References](#page-108-0)**

[The Axiom of](#page-0-0) **Choice**

Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

Proposition

There is a function f : $\mathcal{P}(\mathbb{N}) \setminus \{\emptyset\} \to \mathbb{N}$ *such that*

f(*A*) \in *A for A* \subset N, *A* \neq \emptyset

[The Axiom of](#page-0-0) **Choice**

Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

Proposition

There is a function f : $\mathcal{P}(\mathbb{N}) \setminus \{\emptyset\} \to \mathbb{N}$ *such that*

$$
f(A)\in A \text{ for } A\subseteq \mathbb{N}, A\neq \emptyset
$$

Proof.

min(*A*)

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

to make

[things simple](#page-59-0)

Proposition

There is a function f : $\mathcal{P}(\mathbb{N}) \setminus \{\emptyset\} \to \mathbb{N}$ *such that*

f(*A*) \in *A for A* \subset N, *A* \neq \emptyset

Corollary

There is a function f : $\mathcal{P}(\mathbb{Q}) \setminus \{\emptyset\} \to \mathbb{Q}$ *such that*

f(*A*) \in *A for A* \subseteq \mathbb{Q} *, A* \neq \emptyset

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

Proposition

There is a function f : $\mathcal{P}(\mathbb{N}) \setminus \{ \emptyset \} \to \mathbb{N}$ *such that*

$$
f(A)\in A \text{ for } A\subseteq \mathbb{N}, A\neq \emptyset
$$

Corollary

There is a function f : $\mathcal{P}(\mathbb{Q}) \setminus \{\emptyset\} \to \mathbb{Q}$ *such that*

$$
f(A) \in A \text{ for } A \subseteq \mathbb{Q}, A \neq \emptyset
$$

Problem

Is there a function f : $\mathcal{P}(\mathbb{R}) \setminus \{\emptyset\} \to \mathbb{R}$ *such that*

f(*A*) \in *A for A* \subset R, *A* \neq Ø?

[The Axiom of](#page-0-0) **Choice**

Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

Axiom of Choice

∀*S* ∃*f* : P(*S*) \ {∅} → *S f*(*A*) \in *A* all *A* \subseteq *S*, *A* \neq *Ø*

[The Axiom of](#page-0-0) **Choice**

Cherlin

[The Axiom](#page-1-0)

to make

[things simple](#page-59-0)

Axiom of Choice

∀*S* ∃*f* : P(*S*) \ {∅} → *S f*(*A*) \in *A* all *A* \subseteq *S*, *A* \neq *Ø*

EQUIVALENTLY

$$
\bullet \ \forall (A_i)_{i \in I} \ \exists (a_i)_{i \in I} \ a_i \in A_i \ \Pi_i A_i \neq \emptyset];
$$

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

Axiom of Choice

$$
\forall S \quad \exists f: \quad \mathcal{P}(S) \setminus \{\emptyset\} \to S
$$

$$
f(A) \in A \quad \text{all} \quad A \subseteq S, A \neq \emptyset
$$

EQUIVALENTLY

- $\forall (A_i)_{i \in I}$ $\exists (a_i)_{i \in I}$ $a_i \in A_i$ $[\prod_i A_i \neq \emptyset];$
- For all partitions (*Ai*)*i*∈*^I* of *A*, there is a *cross-section* $X \subseteq A:$ $|X \cap A_i| = 1$ all *i*.

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

Axiom of Choice

$$
\forall S \quad \exists f: \quad \mathcal{P}(S) \setminus \{\emptyset\} \to S
$$

$$
f(A) \in A \quad \text{all} \quad A \subseteq S, A \neq \emptyset
$$

EQUIVALENTLY

 $\forall (A_i)_{i \in I}$ $\exists (a_i)_{i \in I}$ $a_i \in A_i$ $[\prod_i A_i \neq \emptyset];$

For all partitions (*Ai*)*i*∈*^I* of *A*, there is a *cross-section* $X \subseteq A:$ $|X \cap A_i| = 1$ all *i*.

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

Axiom of Choice

$$
\forall S \quad \exists f: \quad \mathcal{P}(S) \setminus \{\emptyset\} \to S
$$

$$
f(A) \in A \quad \text{all} \quad A \subseteq S, A \neq \emptyset
$$

EQUIVALENTLY

 $\forall (A_i)_{i \in I}$ $\exists (a_i)_{i \in I}$ $a_i \in A_i$ $[\prod_i A_i \neq \emptyset];$

For all partitions (*Ai*)*i*∈*^I* of *A*, there is a *cross-section* $X \subseteq A:$ $|X \cap A_i| = 1$ all *i*.

[The Axiom of](#page-0-0) **Choice**

Cherlin

[The Axiom](#page-1-0)

to make

[things simple](#page-59-0)

1 Useful and essential for infinite processes. Example: Bases in infinite dimensional vector spaces.

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

-
-
- [things simple](#page-59-0)
-
-
-

1 Useful and essential for infinite processes. Example: Bases in infinite dimensional vector spaces.

2 Nonconstructive.

- Asserts existence only.
- Sometimes, it is enough to know that something *exists.* Other times, we need to *find* it explicitly.

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

-
-
- [things simple](#page-59-0)
-
-
-

1 Useful and essential for infinite processes. Example: Bases in infinite dimensional vector spaces.

2 Nonconstructive.

- Asserts existence only.
- Sometimes, it is enough to know that something *exists.* Other times, we need to *find* it explicitly.
- ³ Surprising ("paradoxical") consequences.

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

1 Useful and essential for infinite processes. Example: Bases in infinite dimensional vector spaces.

2 Nonconstructive

Asserts existence only.

Sometimes, it is enough to know that something *exists.* Other times, we need to *find* it explicitly.

³ Surprising ("paradoxical") consequences.

Useful, but dangerous.

[The Axiom of](#page-0-0) Choice

Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

1 [The Axiom](#page-1-0)

2 [A hard choice to make](#page-15-0)

- [Zorn's Lemma](#page-41-0)
- [AC makes things simple](#page-59-0)
- [AC makes things complicated](#page-87-0)
- **[Further Applications](#page-99-0)**
- **[References](#page-108-0)**

[The Axiom of](#page-0-0) **Choice**

Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

 $A_r = r + \mathbb{Q} \subseteq \mathbb{R}$ ($r \in \mathbb{R}$)

$A_r = r + \mathbb{Q} \subseteq \mathbb{R}$ ($r \in \mathbb{R}$)

Lemma

[The Axiom](#page-1-0) [A hard choice](#page-15-0) to make

[The Axiom of](#page-0-0) **Choice** Cherlin

[things simple](#page-59-0)

If A_r meets A_s *then* $A_r = A_s$ *. Thus the sets A_r partition* R*.*

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

$$
A_r = r + \mathbb{Q} \subseteq \mathbb{R} \ (r \in \mathbb{R})
$$

Lemma

If A_r meets A_s *then* $A_r = A_s$ *. Thus the sets* A_r *partition* \mathbb{R} *.*

Proof.

The relation

$$
x-y\in\mathbb{Q}
$$

is an *equivalence relation* on R. The sets *A^r* are the equivalence classes for this relation.

[The Axiom of](#page-0-0) **Choice**

Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

$$
A_r = r + \mathbb{Q} \subseteq \mathbb{R} \ (r \in \mathbb{R})
$$

Lemma

If A_{<i>r} meets A_{*s*} then $A_r = A_s$. Thus the sets A_r partition \mathbb{R} .

AC: There is a cross section *X* for this partition.

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

$$
A_r = r + \mathbb{Q} \subseteq \mathbb{R} \ (r \in \mathbb{R})
$$

Lemma

If A_r meets A_s *then* $A_r = A_s$ *. Thus the sets* A_r *partition* \mathbb{R} *.*

AC: There is a cross section *X* for this partition.

Can you find one?

 $X + q$ ($q \in \mathbb{Q}$) should partition R

[The Axiom of](#page-0-0) **Choice**

Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

Axioms for Length

 $\ell : \mathcal{P}(\mathbb{R}) \to \mathbb{R}$

[The Axiom of](#page-0-0) **Choice**

Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

Axioms for Length

 $\ell : \mathcal{P}(\mathbb{R}) \to \mathbb{R}$

 $0 \leq \ell(A) \leq \infty$.

[The Axiom of](#page-0-0) **Choice**

Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

Axioms for Length

 $0 \leq \ell(A) \leq \infty$.

$$
2 \ell[a,b]=b-a.
$$

[The Axiom of](#page-0-0) **Choice**

Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

Axioms for Length

- $\ell : \mathcal{P}(\mathbb{R}) \to \mathbb{R}$
	- $0 \leq \ell(A) \leq \infty$.

$$
2 \ell[a,b]=b-a.
$$

2 Countable additivity:
$$
\ell(\bigcup_{i=0}^{\infty} A_i) = \sum_{i} \ell(A_i)
$$

[The Axiom of](#page-0-0) **Choice**

Gregory Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

Axioms for Length

- $\ell : \mathcal{P}(\mathbb{R}) \to \mathbb{R}$
	- $0 \leq \ell(A) \leq \infty$.
	- 2 $\ell[a, b] = b a$.
	- **3** Countable additivity: $\ell(\bigcup_{i=1}^{\infty}$ A_{i} = \sum_{i} $\ell(A_i)$

i

4 Translation invariance: $\ell(A + r) = \ell(A)$.

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

Axioms for Length

 $\ell : \mathcal{P}(\mathbb{R}) \to \mathbb{R}$

- $0 \leq \ell(A) \leq \infty$.
- **2** $\ell[a, b] = b a$.
- **3** Countable additivity: $\ell(\bigcup_{i=1}^{\infty}$ A_{i} = \sum_{i} *i* $\ell(A_i)$

4 Translation invariance: $\ell(A + r) = \ell(A)$.

Proposition (Vitali (1905))

There is no such notion of length.

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

Axioms for Length

- $\ell : \mathcal{P}(\mathbb{R}) \to \mathbb{R}$
	- $0 \leq \ell(A) \leq \infty$.
	- 2 $\ell[a, b] = b a$.
	- **3** Countable additivity: $\ell(\bigcup_{i=1}^{\infty}$ A_{i} = \sum_{i} $\ell(A_i)$
	- **4** Translation invariance: $\ell(A + r) = \ell(A)$.

Let *X* be a cross section for the Vitali partition *contained in* $[0, 1]$. Claim: *X* cannot have a length.

i

[The Axiom of](#page-0-0) **Choice**

Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

A Vitali cross section $X \subseteq [0, 1]$ cannot have a length.

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

A Vitali cross section $X \subseteq [0, 1]$ cannot have a length.

(Properties of Length)

 $0 \leq \ell(A) \leq \infty$.

2 $\ell[a, b] = b - a$.

3 Countable additivity $\ell(\begin{bmatrix} 1 \end{bmatrix})$ \sum_i **A**_{*i*} $) = \sum_i$ *i* $\ell(A_i)$

4 Translation invariance $\ell(A + r) = \ell(A)$.

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

A Vitali cross section $X \subseteq [0, 1]$ cannot have a length.

(Properties of Length)

- $0 \leq \ell(A) \leq \infty$.
- **2** $\ell[a, b] = b a$.

2 Countable additivity
$$
\ell(\bigcup_i A_i) = \sum_i \ell(A_i)
$$

4 Translation invariance $\ell(A + r) = \ell(A)$.

• If
$$
\ell(X) > 0
$$
:

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

[complicated](#page-87-0)

A Vitali cross section $X \subseteq [0, 1]$ cannot have a length.

(Properties of Length)

- $0 \leq \ell(A) \leq \infty$.
- **2** $\ell[a, b] = b a$.
- **3** Countable additivity $\ell(\begin{bmatrix} 1 \end{bmatrix})$ λ_i A_i) = $\sum_i \ell(A_i)$ *i*

4 Translation invariance $\ell(A + r) = \ell(A)$.

Proof.

• If $\ell(X) > 0$: $X + q \subseteq [0,2]$ when $q \in \mathbb{Q} \cap [0,1]$.

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

[complicated](#page-87-0)

A Vitali cross section $X \subseteq [0, 1]$ cannot have a length.

(Properties of Length)

- $0 \leq \ell(A) \leq \infty$.
- 2 $\ell[a, b] = b a$.
- **3** Countable additivity $\ell(\begin{bmatrix} 1 \end{bmatrix})$ λ_i A_i) = $\sum_i \ell(A_i)$ *i*

4 Translation invariance $\ell(A + r) = \ell(A)$.

Proof.

• If $\ell(X) > 0$: $X + q \subseteq [0, 2]$ when $q \in \mathbb{Q} \cap [0, 1]$. $2 = \ell([0, 2]) \geq \ell(X) + \ell(X) + \ell(X) + \ldots$

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

A Vitali cross section $X \subseteq [0, 1]$ cannot have a length.

(Properties of Length)

 $0 \leq \ell(A) \leq \infty$.

- **2** $\ell[a, b] = b a$.
	- **3** Countable additivity $\ell(\begin{bmatrix} 1 \end{bmatrix})$ \sum_i **A**_{*i*} $) = \sum_i$ *i* $\ell(A_i)$

4 Translation invariance $\ell(A + r) = \ell(A)$.

• If
$$
\ell(X) = 0
$$
:

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

A Vitali cross section $X \subseteq [0, 1]$ cannot have a length.

(Properties of Length)

 $0 \leq \ell(A) \leq \infty$.

- **2** $\ell[a, b] = b a$.
	- **3** Countable additivity $\ell(\begin{bmatrix} 1 \end{bmatrix})$ \sum_i **A**_{*i*} $) = \sum_i$ *i* $\ell(A_i)$

4 Translation invariance $\ell(A + r) = \ell(A)$.

• If
$$
\ell(X) = 0
$$
:
 $[0,1] \subseteq \bigcup_q (X+q)$

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

A Vitali cross section $X \subseteq [0, 1]$ cannot have a length.

(Properties of Length)

 $0 \leq \ell(A) \leq \infty$.

- **2** $\ell[a, b] = b a$.
	- **3** Countable additivity $\ell(\begin{bmatrix} 1 \end{bmatrix})$ \sum_i **A**_{*i*} $) = \sum_i$ *i* $\ell(A_i)$

4 Translation invariance $\ell(A + r) = \ell(A)$.

If
$$
\ell(X) = 0
$$
:
\n $[0, 1] \subseteq \bigcup_{q}(X + q)$
\n $1 = \ell([0, 1]) \leq 0 + 0 + 0 + \dots$
[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

There is a good theory of length (Lebesgue measure). All axioms hold, but it is not defined for every set.

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

There is a good theory of length (Lebesgue measure). All axioms hold, but it is not defined for every set.

 \langle philosophy \rangle

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

There is a good theory of length (Lebesgue measure). All axioms hold, but it is not defined for every set.

\langle philosophy \rangle

In practice, if a set of reals can be defined explicitly, it *does* have a well-defined length (Lebesgue measure).

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

There is a good theory of length (Lebesgue measure). All axioms hold, but it is not defined for every set.

\langle philosophy \rangle

In practice, if a set of reals can be defined explicitly, it *does* have a well-defined length (Lebesgue measure).

Conclusion: Vitali cross sections cannot be defined explicitly.

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

There is a good theory of length (Lebesgue measure). All axioms hold, but it is not defined for every set.

\langle philosophy \rangle

In practice, if a set of reals can be defined explicitly, it *does* have a well-defined length (Lebesgue measure).

Conclusion: Vitali cross sections cannot be defined explicitly.

 \langle /philosophy \rangle

[The Axiom of](#page-0-0) Choice

Cherlin

[The Axiom](#page-1-0) to make

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

1 [The Axiom](#page-1-0)

2 [A hard choice to make](#page-15-0)

3 [Zorn's Lemma](#page-41-0)

- [AC makes things simple](#page-59-0)
- [AC makes things complicated](#page-87-0)
- **[Further Applications](#page-99-0)**
- **[References](#page-108-0)**

[The Axiom of](#page-0-0) Choice

Cherlin

[The Axiom](#page-1-0) to make

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

Infinite dimensional vector spaces.

Example: $F(\mathbb{R}, \mathbb{R})$ —all functions from \mathbb{R} to \mathbb{R} . Subspaces: continuous, differentiable, . . .

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

Infinite dimensional vector spaces.

Example: $F(\mathbb{R}, \mathbb{R})$ —all functions from \mathbb{R} to \mathbb{R} . Subspaces: continuous, differentiable, . . .

What is "dimension"? What is a "basis"? Maximal linearly independent set.

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

Infinite dimensional vector spaces.

Example: $F(\mathbb{R}, \mathbb{R})$ —all functions from \mathbb{R} to \mathbb{R} . Subspaces: continuous, differentiable, . . .

What is "dimension"? What is a "basis"? Maximal linearly independent set. But do they exist? f_1, f_2, \ldots

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

Infinite dimensional vector spaces.

Example: $F(\mathbb{R}, \mathbb{R})$ —all functions from \mathbb{R} to \mathbb{R} . Subspaces: continuous, differentiable, . . .

What is "dimension"? What is a "basis"? Maximal linearly independent set. But do they exist?

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

Infinite dimensional vector spaces.

Example: $F(\mathbb{R}, \mathbb{R})$ —all functions from \mathbb{R} to \mathbb{R} . Subspaces: continuous, differentiable, . . .

What is "dimension"? What is a "basis"? Maximal linearly independent set. But do they exist?

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

Infinite dimensional vector spaces.

Example: $F(\mathbb{R}, \mathbb{R})$ —all functions from $\mathbb R$ to $\mathbb R$. Subspaces: continuous, differentiable, . . .

What is "dimension"? What is a "basis"? Maximal linearly independent set. But do they exist?

- How to continue?
- How to stop?

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

Infinite dimensional vector spaces.

Example: $F(\mathbb{R}, \mathbb{R})$ —all functions from $\mathbb R$ to $\mathbb R$. Subspaces: continuous, differentiable, . . .

What is "dimension"? What is a "basis"? Maximal linearly independent set. But do they exist?

- How to continue? AC
- How to stop?

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

Infinite dimensional vector spaces.

Example: $F(\mathbb{R}, \mathbb{R})$ —all functions from \mathbb{R} to \mathbb{R} . Subspaces: continuous, differentiable, . . .

What is "dimension"? What is a "basis"? Maximal linearly independent set. But do they exist?

- How to continue?
- How to stop? (ordinals)

[The Axiom of](#page-0-0) **Choice**

> **Gregory** Cherlin

[The Axiom](#page-1-0)

to make

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

V a vector space $\mathcal{I} = \{X \subseteq V : X \text{ is linearly independent}\}\$ *X* ≤ *Y* ⇐⇒ *X* ⊆ *Y*

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

V a vector space $\mathcal{I} = \{X \subseteq V : X \text{ is linearly independent}\}\$ *X* ≤ *Y* ⇐⇒ *X* ⊆ *Y*

Definition

A partially ordered set (p.o.s.) is a set *I* together with a relation ≤ on *I* which is *reflexive, antisymmetric, transitive*.

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

V a vector space $\mathcal{I} = \{X \subseteq V : X \text{ is linearly independent}\}\$ *X* ≤ *Y* ⇐⇒ *X* ⊆ *Y*

Definition

- A partially ordered set (p.o.s.) is a set *I* together with a relation ≤ on *I* which is *reflexive, antisymmetric, transitive*.
	- A linearly ordered set is a p.o.s. whose order relation is total: any two elements are comparable.

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

$$
\mathcal{I} = \{ X \subseteq V : X \text{ is linearly independent} \}
$$

$$
X \le Y \iff X \subseteq Y
$$

Definition

- A partially ordered set (p.o.s.) is a set *I* together with a relation ≤ on *I* which is *reflexive, antisymmetric, transitive*.
	- A linearly ordered set is a p.o.s. whose order relation is total: any two elements are comparable.
	- A chain in a p.o.s. is a linearly ordered subset.

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

[complicated](#page-87-0)

$$
X\leq Y\iff X\subseteq Y
$$

Definition

- A partially ordered set (p.o.s.) is a set *I* together with a relation ≤ on *I* which is *reflexive, antisymmetric, transitive*.
- A linearly ordered set is a p.o.s. whose order relation is total: any two elements are comparable.
- A chain in a p.o.s. is a linearly ordered subset.
- A subset *X* of a p.o.s. (I, \leq) is bounded above if there is an element *a* of *I* with

$$
x\leq a \,(\text{all } x\in X)
$$

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

Definition

- A partially ordered set (p.o.s.) is a set *I* together with a relation ≤ on *I* which is *reflexive, antisymmetric, transitive*.
- A linearly ordered set is a p.o.s. whose order relation is total: any two elements are comparable.
- A chain in a p.o.s. is a linearly ordered subset.
- A subset *X* of a p.o.s. (I, \leq) is bounded above if there is an element *a* of *I* with

$$
x\leq a \,(\text{all } x\in X)
$$

Example: Independent subsets of *V*, with ⊆. An *increasing sequence* of independent subsets of I would form a chain—and their union is an *upper bound* for the chain.

Maximal Elements of p.o.s.

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0) to make

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

Zorn's Lemma

Let (I, \leq) be a p.o.s. in which every chain has an upper bound. Then *I* has a maximal element.

Maximal Elements of p.o.s.

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

Zorn's Lemma

Let (I, \leq) be a p.o.s. in which every chain has an upper bound. Then *I* has a maximal element.

Examples

- Independent subsets of vector spaces.
- **•** Proper ideals in a commutative ring with 1.

Maximal Elements of p.o.s.

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[Zorn's Lemma](#page-41-0)

[things simple](#page-59-0)

Zorn's Lemma

Let (I, \leq) be a p.o.s. in which every chain has an upper bound. Then *I* has a maximal element.

Examples

- Independent subsets of vector spaces.
- **•** Proper ideals in a commutative ring with 1.

[The Axiom of](#page-0-0) Choice

Cherlin

[The Axiom](#page-1-0) to make

AC makes [things simple](#page-59-0)

1 [The Axiom](#page-1-0)

2 [A hard choice to make](#page-15-0)

[Zorn's Lemma](#page-41-0)

4 [AC makes things simple](#page-59-0)

[AC makes things complicated](#page-87-0)

[Further Applications](#page-99-0)

Zorn's Lemma

[The Axiom of](#page-0-0) Choice

Cherlin

[The Axiom](#page-1-0) to make

AC makes [things simple](#page-59-0)

Let (I, \leq) be a p.o.s. in which every chain has an upper bound. Then *I* has a maximal element.

[The Axiom of](#page-0-0) Choice

Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

Zorn's Lemma

Let (I, \leq) be a p.o.s. in which every chain has an upper bound. Then *I* has a maximal element.

Theorem

The Axiom of Choice and Zorn's Lemma are equivalent.

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

Zorn's Lemma

Let (I, \leq) be a p.o.s. in which every chain has an upper bound. Then *I* has a maximal element.

Theorem

The Axiom of Choice and Zorn's Lemma are equivalent.

Applications

• Every vector space has a basis.

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

Zorn's Lemma

Let (I, \leq) be a p.o.s. in which every chain has an upper bound. Then *I* has a maximal element.

Theorem

The Axiom of Choice and Zorn's Lemma are equivalent.

Applications

- Every vector space has a basis.
- Every commutative ring with 1 has a maximal ideal.

[The Axiom of](#page-0-0) **Choice**

Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

AC makes [things simple](#page-59-0)

Theorem

The Axiom of Choice and Zorn's Lemma are equivalent.

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

Theorem

The Axiom of Choice and Zorn's Lemma are equivalent.

Proof.

 \Longleftarrow : To build a cross section X for a partition $(A_i)_{i\in I}$, let Ξ be the p.o.s. consisting of sets *X* satisfying

$$
|X\cap A_i|\leq 1 \quad \text{ (all } i\in I)
$$

ordered by inclusion.

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

Theorem

The Axiom of Choice and Zorn's Lemma are equivalent.

Proof.

 \Longleftarrow : To build a cross section X for a partition $(A_i)_{i\in I}$, let Ξ be the p.o.s. consisting of sets *X* satisfying

$$
|X\cap A_i|\leq 1 \quad \text{(all } i\in I)
$$

ordered by inclusion.

By Zorn's Lemma, there is a maximal $X \in \Xi$. It must be a cross section!

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

Theorem

The Axiom of Choice and Zorn's Lemma are equivalent.

Proof.

=⇒ *(sketch):*

If a p.o.s. *I* has no maximal element, use *AC* to find a function $f: I \rightarrow I$ such that

$$
f(x) > x \text{ for } x \in I
$$

Use *f* to build a *very long* increasing sequence (a chain) which has no upper bound. (\ldots) .

Well-Ordering

[The Axiom of](#page-0-0) **Choice**

Cherlin

[The Axiom](#page-1-0) to make

AC makes [things simple](#page-59-0)

Definition

A linear ordering (L, \leq) is a well ordering, if every nonempty subset of *L* has a minimum.

Well-Ordering

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

Definition

A linear ordering (L, \leq) is a well ordering, if every nonempty subset of *L* has a minimum.

Some well ordered subsets of \mathbb{R}^n

 $\mathbb{N}; \quad \{1/n : n \in \mathbb{N}\},\$ with the reverse ordering

Well-Ordering

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

Definition

A linear ordering (L, \leq) is a well ordering, if every nonempty subset of *L* has a minimum.

Some well ordered subsets of R:

 $\mathbb{N}; \quad \{1/n : n \in \mathbb{N}\},\$ with the reverse ordering $\{1/m + 1/n : m, n \in \mathbb{N}\},\$ with the reverse ordering; $\frac{1}{\sqrt{1-\frac{1}{2}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1}{\sqrt{1-\frac{1}{2}}}\left(\frac{1$
Well-Ordering

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

Definition

A linear ordering (L, \leq) is a well ordering, if every nonempty subset of *L* has a minimum.

Some well ordered subsets of \mathbb{R}^n \mathbb{N} ; $\{1/n : n \in \mathbb{N}\}$, with the reverse ordering

 ${1/m + 1/n : m, n \in \mathbb{N}}$, with the reverse ordering;

```
Some not well-ordered subsets of \mathbb{R}:
R, Q, [0, 1].
```
Well-Ordering

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

Definition

A linear ordering (L, \leq) is a well ordering, if every nonempty subset of *L* has a minimum.

Some well ordered subsets of R:

 $\mathbb{N}; \qquad \{1/n : n \in \mathbb{N}\},$ with the reverse ordering ${1/m + 1/n : m, n \in \mathbb{N}}$, with the reverse ordering; Some not well-ordered subsets of \mathbb{R} : $R, Q, [0, 1].$

Remark

Q can be well-ordered.

Well-Ordering

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

Definition

A linear ordering (L, \leq) is a well ordering, if every nonempty subset of *L* has a minimum.

Some well ordered subsets of R:

 $\mathbb{N}; \qquad \{1/n : n \in \mathbb{N}\},$ with the reverse ordering ${1/m + 1/n : m, n \in \mathbb{N}}$, with the reverse ordering; Some not well-ordered subsets of \mathbb{R} : $R, Q, [0, 1].$

Remark

Q can be well-ordered.

Problem

Can R *be well-ordered?*

[The Axiom of](#page-0-0) **Choice**

Cherlin

[The Axiom](#page-1-0) [A hard choice](#page-15-0) to make

AC makes [things simple](#page-59-0)

Theorem (Zermelo)

Any set S can be well ordered.

In fact:

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

Theorem (Zermelo)

Any set S can be well ordered.

In fact:

Theorem

The following are equivalent.

- *The Axiom of Choice.*
- *Zorn's Lemma*
- *The Well Ordering Principle*

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

[complicated](#page-87-0)

Theorem (Zermelo)

Any set S can be well ordered.

In fact:

Theorem

The following are equivalent.

- *The Axiom of Choice.*
- *Zorn's Lemma*
- *The Well Ordering Principle*

The Axiom of Choice is obviously true; the Well Ordering Principle is obviously false; and who can tell about Zorn's Lemma?—Jerry Bona

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

[complicated](#page-87-0)

Theorem (Zermelo)

Any set S can be well ordered.

In fact:

Theorem

The following are equivalent.

- *The Axiom of Choice.*
- *Zorn's Lemma*
- *The Well Ordering Principle*

Fréchet: An implication between two known truths is not a new result. Lebesgue: An implication between two false statements is of no interest.

From *WO* to *AC*

[The Axiom of](#page-0-0) Choice

Cherlin

[The Axiom](#page-1-0) to make

AC makes [things simple](#page-59-0)

Theorem

The following are equivalent.

- *The Axiom of Choice.*
- *Zorn's Lemma*
- *The Well Ordering Principle*

From *WO* to *AC*

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0) to make

AC makes [things simple](#page-59-0)

Theorem

The following are equivalent.

- *The Axiom of Choice.*
- *Zorn's Lemma*
- *The Well Ordering Principle*

From *WO* to *AC*: $f(A) = min(A)!$

From *WO* to *AC*

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

Theorem

The following are equivalent.

- *The Axiom of Choice.*
- *Zorn's Lemma*
- *The Well Ordering Principle*

From *WO* to *AC*: $f(A) = min(A)!$ From Zorn to *WO* . . .

Zorn =⇒ *WO*

Cherlin

[The Axiom](#page-1-0) [A hard choice](#page-15-0) to make

AC makes [things simple](#page-59-0)

To show: *S can be well ordered.*

I = { $(X, ≤_X)$: $X ⊆ S$, ≤ is a well ordering of X }

Zorn =⇒ *WO*

Cherlin

[The Axiom](#page-1-0) to make

AC makes [things simple](#page-59-0)

To show: *S can be well ordered.*

 $I = \{(X, \leq_X) : X \subseteq S, \leq$ is a well ordering of $X\}$ How do we compare (X, \leq_X) and (Y, \leq_Y) ?

Zorn =⇒ *WO*

Gregory Cherlin

[The Axiom](#page-1-0) to make

AC makes [things simple](#page-59-0)

To show: *S can be well ordered.*

 $I = \{(X, \leq_X) : X \subseteq S, \leq$ is a well ordering of $X\}$ How do we compare (X, \leq_X) and (Y, \leq_Y) ?

First try: $X \subseteq Y$ and \leq_Y agrees with \leq_X on X.

Zorn =⇒ *WO*

> **Gregory** Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

To show: *S can be well ordered.*

```
I = \{(X, \leq_X): X \subseteq S, \leq is a well ordering of X\}How do we compare (X, \leq_X) and (Y, \leq_Y)?
```
First try: $X \subseteq Y$ and \leq_Y agrees with \leq_X on X. Does not work.

The sets $X_n = \{-n, -n+1, \ldots, 0\}$ with the usual ordering are well ordered (finite!) and form a chain. Their union gives the usual ordering of −N. Not a WO.

 Z orn \implies *WO*

Gregory Cherlin

[The Axiom](#page-1-0)

AC makes [things simple](#page-59-0)

[complicated](#page-87-0)

To show: *S can be well ordered.*

 $I = \{(X, \leq_X): X \subseteq S, \leq$ is a well ordering of $X\}$ How do we compare (X, \leq_X) and (Y, \leq_Y) ?

First try: $X \subseteq Y$ and \leq_Y agrees with \leq_X on X. The sets $X_n = \{-n, -n+1, \ldots, 0\}$ with the usual ordering are well ordered (finite!) and form a chain. Their union gives the usual ordering of −N. Not a WO.

Second try: $X \subseteq Y$; \leq_Y agrees with \leq_X on X; and $Y \setminus X > X$.

Retter

Cherlin

[The Axiom](#page-1-0) to make

[things simple](#page-59-0)

AC makes things [complicated](#page-87-0)

1 [The Axiom](#page-1-0)

- 2 [A hard choice to make](#page-15-0)
- [Zorn's Lemma](#page-41-0)
	- [AC makes things simple](#page-59-0)
- 5 [AC makes things complicated](#page-87-0)
	- **[Further Applications](#page-99-0)**
	- **[References](#page-108-0)**

Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0) to make

[things simple](#page-59-0)

AC makes things [complicated](#page-87-0)

Functional equation:
$$
f(x + y) = f(x) + f(y)
$$
.–Solve for f.

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0) to make

[things simple](#page-59-0)

AC makes things [complicated](#page-87-0)

Functional equation:
$$
f(x + y) = f(x) + f(y)
$$
—Solve for f.

Theorem

Any function f : $\mathbb{R} \to \mathbb{R}$ *which satisfies*

$$
f(x + y) = f(x) + f(y) \text{ all } x, y \in \mathbb{R}
$$

is either of the form $f(x) = mx$ *or is discontinuous everywhere.*

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

AC makes things [complicated](#page-87-0)

Functional equation:
$$
f(x + y) = f(x) + f(y)
$$
—Solve for f.

Theorem

Any function f : $\mathbb{R} \to \mathbb{R}$ *which satisfies*

$$
f(x + y) = f(x) + f(y) \text{ all } x, y \in \mathbb{R}
$$

is either of the form $f(x) = mx$ *or is discontinuous everywhere.*

Example

Fix a basis X for $\mathbb R$ as a vector space over $\mathbb O$ with $1 \in X$. For $r \in \mathbb{R}$, let $f(r)$ be the coefficient of 1 in the expansion of *r* with respect to the basis *X*.

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

AC makes things [complicated](#page-87-0)

Functional equation:
$$
f(x + y) = f(x) + f(y)
$$
—Solve for f.

Theorem

Any function f : $\mathbb{R} \to \mathbb{R}$ *which satisfies*

$$
f(x + y) = f(x) + f(y) \text{ all } x, y \in \mathbb{R}
$$

is either of the form f(*x*) = *mx or is discontinuous everywhere.*

Example

Fix a basis X for $\mathbb R$ as a vector space over $\mathbb O$ with $1 \in X$. For $r \in \mathbb{R}$, let $f(r)$ be the coefficient of 1 in the expansion of *r* with respect to the basis *X*. $(f(1) = 1$, and $f(x) = 0$ for $x \in X$, $x \neq 1$

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

AC makes things [complicated](#page-87-0)

Functional equation:
$$
f(x + y) = f(x) + f(y)
$$
—Solve for f.

Theorem

Any function f : $\mathbb{R} \to \mathbb{R}$ *which satisfies*

$$
f(x + y) = f(x) + f(y) \text{ all } x, y \in \mathbb{R}
$$

is either of the form $f(x) = mx$ *or is discontinuous everywhere.*

Example

Fix a basis X for $\mathbb R$ as a vector space over $\mathbb O$ with $1 \in X$. For $r \in \mathbb{R}$, let $f(r)$ be the coefficient of 1 in the expansion of *r* with respect to the basis *X*. $(f(1) = 1$, and $f(x) = 0$ for $x \in X$, $x \neq 1$

These functions *exist,* but none has ever been *constructed.*

Something for Nothing

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

AC makes things [complicated](#page-87-0)

Theorem (Hausdorf, Banach, Tarski)

A sphere of radius 1 may be decomposed into finitely many pieces which can be reassembled to make two spheres of radius 1.

Something for Nothing

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

AC makes things [complicated](#page-87-0)

Theorem (Hausdorf, Banach, Tarski)

A sphere of radius 1 may be decomposed into finitely many pieces which can be reassembled to make two spheres of radius 1.

(Some vague idea . . . :)

A variation on the Vitali decomposition, using rotations instead of translations!

Something for Nothing

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

AC makes things [complicated](#page-87-0)

Theorem (Hausdorf, Banach, Tarski)

A sphere of radius 1 may be decomposed into finitely many pieces which can be reassembled to make two spheres of radius 1.

(Some vague idea . . . :)

A variation on the Vitali decomposition, using rotations instead of translations!

Less vague:

Stan Wagon, *The Banach-Tarski Paradox*, Cambridge University Press, 1985 (paperback, 1993). ISBN 0-521-45704-1 (paperback).

Length, Area, Volume

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

AC makes things [complicated](#page-87-0)

Measures on subsets of \mathbb{R}^n : countably additive, invariant under translation and rotation, normalized on the unit cube. What about: finitely additive?

Theorem

- There is no finitely additive invariant measure on \mathbb{R}^3 .
- *There is a finitely additive invariant measure on* R ¹ *and on* \mathbb{R}^2 .

Length, Area, Volume

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

AC makes things [complicated](#page-87-0)

Measures on subsets of \mathbb{R}^n : countably additive, invariant under translation and rotation, normalized on the unit cube. What about: finitely additive?

Theorem

- There is no finitely additive invariant measure on \mathbb{R}^3 .
- *There is a finitely additive invariant measure on* R ¹ *and on* \mathbb{R}^2 .

Proof.

For *n* = 3: Banach-Tarski.

Length, Area, Volume

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

AC makes things [complicated](#page-87-0)

Measures on subsets of \mathbb{R}^n : countably additive, invariant under translation and rotation, normalized on the unit cube. What about: finitely additive?

Theorem

- There is no finitely additive invariant measure on \mathbb{R}^3 .
- *There is a finitely additive invariant measure on* R ¹ *and on* \mathbb{R}^2 .

Proof.

For *n* = 3: Banach-Tarski. For *n* = 1, 2 see Wagon. This also uses *AC*!

Cherlin

[The Axiom](#page-1-0) to make

[things simple](#page-59-0)

Further [Applications](#page-99-0)

1 [The Axiom](#page-1-0)

2 [A hard choice to make](#page-15-0)

[Zorn's Lemma](#page-41-0)

[AC makes things simple](#page-59-0)

[AC makes things complicated](#page-87-0)

6 [Further Applications](#page-99-0)

[References](#page-108-0)

[The Axiom of](#page-0-0) **Choice**

Cherlin

[The Axiom](#page-1-0)

to make

[things simple](#page-59-0)

Further [Applications](#page-99-0)

A countable union of countable sets is countable. (Needs *AC*!!?!)

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[A hard choice](#page-15-0)

[things simple](#page-59-0)

Further [Applications](#page-99-0)

- A countable union of countable sets is countable. (Needs *AC*!!?!)
- **•** If *G* is a group, $A \leq G$ an abelian subgroup, then there is a subgroup *B* with

 $A < B < G$

and $C_G(B) = B$. (Exercise)

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

Further [Applications](#page-99-0)

- A countable union of countable sets is countable. (Needs *AC*!!?!)
- **•** If *G* is a group, $A \leq G$ an abelian subgroup, then there is a subgroup *B* with

$$
A\leq B\leq G
$$

and $C_G(B) = B$. (Exercise)

 \bullet If $h : (A, +) \rightarrow (\mathbb{R}, +)$ is a homomorphism, and $A \leq B$ abelian, then *h* extends to $h' : B \to \mathbb{R}$.

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

Further [Applications](#page-99-0)

- A countable union of countable sets is countable. (Needs *AC*!!?!)
- **•** If *G* is a group, $A \le G$ an abelian subgroup, then there is a subgroup *B* with

$$
A\leq B\leq G
$$

and $C_G(B) = B$. (Exercise)

- \bullet If $h : (A, +) \rightarrow (\mathbb{R}, +)$ is a homomorphism, and $A \leq B$ abelian, then *h* extends to $h' : B \to \mathbb{R}$.
- *R* a commutative ring with 1. Suppose every prime ideal of *R* is f.g. Then every ideal of *R* is f.g. (Tricky)

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

Further [Applications](#page-99-0)

- A countable union of countable sets is countable. (Needs *AC*!!?!)
- **•** If *G* is a group, $A \le G$ an abelian subgroup, then there is a subgroup *B* with

$$
A\leq B\leq G
$$

and $C_G(B) = B$. (Exercise)

- \bullet If $h : (A, +) \rightarrow (\mathbb{R}, +)$ is a homomorphism, and $A \leq B$ abelian, then *h* extends to $h' : B \to \mathbb{R}$.
- *R* a commutative ring with 1. Suppose every prime ideal of *R* is f.g. Then every ideal of *R* is f.g. (Tricky)

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

Further [Applications](#page-99-0)

- A countable union of countable sets is countable. (Needs *AC*!!?!)
- **•** If *G* is a group, $A \leq G$ an abelian subgroup, then there is a subgroup *B* with

$$
A\leq B\leq G
$$

and $C_G(B) = B$. (Exercise)

- \bullet If $h : (A, +) \rightarrow (\mathbb{R}, +)$ is a homomorphism, and $A \leq B$ abelian, then *h* extends to $h' : B \to \mathbb{R}$.
- *R* a commutative ring with 1. Suppose every prime ideal of *R* is f.g. Then every ideal of *R* is f.g. (Tricky)

Lemma

Let I be the set of ideals in R which are not f.g. If I is *nonempty, it contains a maximal element.*

Famous Applications

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

to make

[things simple](#page-59-0)

Further **[Applications](#page-99-0)**

Hahn-Banach: Extension of (bounded) linear functions from subspaces.

Tychonoff: A product of compact topological spaces is compact.

Major Contributors, References

[The Axiom of](#page-0-0) Choice

> **Gregory** Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

Further [Applications](#page-99-0)

Georg Cantor: Theory of ordinals, cardinals, well ordering (ca. 1883, work on sets of uniqueness for trigonometric functions).

Ernst Zermelo, Adolf Fraenkel: axioms for set theory (1908, 1910).

Felix Hausdorff, Stefan Banach, Alfred Tarski: Paradoxical decompositions (1914,1924).

Kazimierz Kuratowski, Max Zorn: Zorn's Lemma (1922,1935).

Paul Cohen: *AC* is not derivable from *ZF* (1963). (Cf. AMS Notices August 2010.)

Hugh Woodin: Under appropriate set theoretic hypotheses, all definable sets of reals are Lebesgue measurable (1984).
[The Axiom of](#page-0-0) Choice

Cherlin

[The Axiom](#page-1-0) to make

[things simple](#page-59-0)

[References](#page-108-0)

1 [The Axiom](#page-1-0)

2 [A hard choice to make](#page-15-0)

[Zorn's Lemma](#page-41-0)

[AC makes things simple](#page-59-0)

[AC makes things complicated](#page-87-0)

[Further Applications](#page-99-0)

References

[The Axiom of](#page-0-0) Choice

Gregory Cherlin

[The Axiom](#page-1-0)

[things simple](#page-59-0)

[References](#page-108-0)

Thomas J. Jech, *The Axiom of Choice*, North-Holland 1973 and Dover Publications 2008. ISBN-13: 978-0-486-46624-8 (Dover paperback).

Kenneth Ross, *Informal Introduction to Set Theory*, 22 pages, http://math.uoregon.edu/people/ross/SetTheory.pdf

To choose one sock from each of infinitely many pairs of socks requires the Axiom of Choice, but for shoes the Axiom is not needed.—Bertrand Russell.