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Choice Functions

Proposition

There is a function f : P(N) \ {∅} → N such that

f (A) ∈ A for A ⊆ N, A 6= ∅

Corollary

There is a function f : P(Q) \ {∅} → Q such that

f (A) ∈ A for A ⊆ Q, A 6= ∅

Problem
Is there a function f : P(R) \ {∅} → R such that

f (A) ∈ A for A ⊆ R, A 6= ∅?
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The Axiom

Axiom of Choice

∀S ∃f : P(S) \ {∅} → S
f (A) ∈ A all A ⊆ S, A 6= ∅

EQUIVALENTLY

∀(Ai)i∈I ∃(ai)i∈I ai ∈ Ai [
∏

i Ai 6= ∅];
For all partitions (Ai)i∈I of A, there is a cross-section
X ⊆ A: |X ∩ Ai | = 1 all i .
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SO WHAT?

1 Useful and essential for infinite processes.
Example: Bases in infinite dimensional vector spaces.

2 Nonconstructive.
Asserts existence only.
Sometimes, it is enough to know that something exists.
Other times, we need to find it explicitly.

3 Surprising (“paradoxical”) consequences.
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SO WHAT?

1 Useful and essential for infinite processes.
Example: Bases in infinite dimensional vector spaces.

2 Nonconstructive.
Asserts existence only.
Sometimes, it is enough to know that something exists.
Other times, we need to find it explicitly.

3 Surprising (“paradoxical”) consequences.

Useful, but dangerous.
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The Vitali Partition

Ar = r + Q ⊆ R (r ∈ R)

Lemma
If Ar meets As then Ar = As. Thus the sets Ar partition R.

AC: There is a cross section X for this partition.

Can you find one?

X + q (q ∈ Q) should partition R
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The Vitali Partition

Ar = r + Q ⊆ R (r ∈ R)

Lemma
If Ar meets As then Ar = As. Thus the sets Ar partition R.

Proof.
The relation

x − y ∈ Q

is an equivalence relation on R.
The sets Ar are the equivalence classes for this relation.

AC: There is a cross section X for this partition.

Can you find one?

X + q (q ∈ Q) should partition R
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Length

Axioms for Length

` : P(R)→ R

1 0 ≤ `(A) ≤ ∞.
2 `[a,b] = b − a.

3 Countable additivity: `(
⋃̇∞

i=0
Ai) =

∑
i

`(Ai)

4 Translation invariance: `(A + r) = `(A).

Let X be a cross section for the Vitali partition contained in
[0,1].
Claim: X cannot have a length.
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` : P(R)→ R
1 0 ≤ `(A) ≤ ∞.
2 `[a,b] = b − a.

3 Countable additivity: `(
⋃̇∞

i=0
Ai) =

∑
i

`(Ai)

4 Translation invariance: `(A + r) = `(A).

Proposition (Vitali (1905))
There is no such notion of length.

Let X be a cross section for the Vitali partition contained in
[0,1].
Claim: X cannot have a length.
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The Vitali Cross Section

A Vitali cross section X ⊆ [0,1] cannot have a length.

(Properties of Length)
1 0 ≤ `(A) ≤ ∞.
2 `[a,b] = b − a.

3 Countable additivity `(
⋃̇

i
Ai) =

∑
i

`(Ai)

4 Translation invariance `(A + r) = `(A).

Proof.
If `(X ) = 0:
[0,1] ⊆

⋃
q(X + q)

1 = `([0,1]) ≤ 0 + 0 + 0 + . . .
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Proof.
If `(X ) > 0:
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Nonconstructivity - Philosophical Interlude

There is a good theory of length (Lebesgue measure).
All axioms hold, but it is not defined for every set.

〈philosophy〉
In practice, if a set of reals can be defined explicitly, it does
have a well-defined length (Lebesgue measure).

Conclusion: Vitali cross sections cannot be defined
explicitly.

〈/philosophy〉



The Axiom of
Choice

Gregory
Cherlin

The Axiom

A hard choice
to make

Zorn’s Lemma

AC makes
things simple

AC makes
things
complicated

Further
Applications

References

Nonconstructivity - Philosophical Interlude

There is a good theory of length (Lebesgue measure).
All axioms hold, but it is not defined for every set.

〈philosophy〉

In practice, if a set of reals can be defined explicitly, it does
have a well-defined length (Lebesgue measure).

Conclusion: Vitali cross sections cannot be defined
explicitly.

〈/philosophy〉



The Axiom of
Choice

Gregory
Cherlin

The Axiom

A hard choice
to make

Zorn’s Lemma

AC makes
things simple

AC makes
things
complicated

Further
Applications

References

Nonconstructivity - Philosophical Interlude

There is a good theory of length (Lebesgue measure).
All axioms hold, but it is not defined for every set.

〈philosophy〉
In practice, if a set of reals can be defined explicitly, it does
have a well-defined length (Lebesgue measure).

Conclusion: Vitali cross sections cannot be defined
explicitly.

〈/philosophy〉



The Axiom of
Choice

Gregory
Cherlin

The Axiom

A hard choice
to make

Zorn’s Lemma

AC makes
things simple

AC makes
things
complicated

Further
Applications

References

Nonconstructivity - Philosophical Interlude

There is a good theory of length (Lebesgue measure).
All axioms hold, but it is not defined for every set.

〈philosophy〉
In practice, if a set of reals can be defined explicitly, it does
have a well-defined length (Lebesgue measure).

Conclusion: Vitali cross sections cannot be defined
explicitly.

〈/philosophy〉



The Axiom of
Choice

Gregory
Cherlin

The Axiom

A hard choice
to make

Zorn’s Lemma

AC makes
things simple

AC makes
things
complicated

Further
Applications

References

Nonconstructivity - Philosophical Interlude

There is a good theory of length (Lebesgue measure).
All axioms hold, but it is not defined for every set.

〈philosophy〉
In practice, if a set of reals can be defined explicitly, it does
have a well-defined length (Lebesgue measure).

Conclusion: Vitali cross sections cannot be defined
explicitly.

〈/philosophy〉



The Axiom of
Choice

Gregory
Cherlin

The Axiom

A hard choice
to make

Zorn’s Lemma

AC makes
things simple

AC makes
things
complicated

Further
Applications

References

1 The Axiom

2 A hard choice to make

3 Zorn’s Lemma

4 AC makes things simple

5 AC makes things complicated

6 Further Applications

7 References



The Axiom of
Choice

Gregory
Cherlin

The Axiom

A hard choice
to make

Zorn’s Lemma

AC makes
things simple

AC makes
things
complicated

Further
Applications

References

The Basis Problem

Infinite dimensional vector spaces.

Example: F (R,R)—all functions from R to R.
Subspaces: continuous, differentiable, . . .

What is “dimension”? What is a “basis”?
Maximal linearly independent set.
But do they exist?
f1, f2, . . . ; g1,g2, . . . ;. . .

How to continue?

AC

How to stop?

(ordinals)
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The Basis Problem (Continued)

V a vector space
I = {X ⊆ V : X is linearly independent}

X ≤ Y ⇐⇒ X ⊆ Y

Definition

A partially ordered set (p.o.s.) is a set I together with a
relation ≤ on I which is reflexive, antisymmetric,
transitive.
A linearly ordered set is a p.o.s. whose order relation is
total: any two elements are comparable.
A chain in a p.o.s. is a linearly ordered subset.
A subset X of a p.o.s. (I,≤) is bounded above if there
is an element a of I with

x ≤ a (all x ∈ X )
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The Basis Problem (Continued)

Definition
A partially ordered set (p.o.s.) is a set I together with a
relation ≤ on I which is reflexive, antisymmetric,
transitive.
A linearly ordered set is a p.o.s. whose order relation is
total: any two elements are comparable.
A chain in a p.o.s. is a linearly ordered subset.
A subset X of a p.o.s. (I,≤) is bounded above if there
is an element a of I with

x ≤ a (all x ∈ X )

Example: Independent subsets of V , with ⊆. An increasing
sequence of independent subsets of I would form a
chain—and their union is an upper bound for the chain.
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Maximal Elements of p.o.s.

Zorn’s Lemma
Let (I,≤) be a p.o.s. in which every chain has an upper
bound. Then I has a maximal element.

Examples
Independent subsets of vector spaces.
Proper ideals in a commutative ring with 1.
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First Applications

Zorn’s Lemma
Let (I,≤) be a p.o.s. in which every chain has an upper
bound. Then I has a maximal element.

Theorem
The Axiom of Choice and Zorn’s Lemma are equivalent.

Applications
Every vector space has a basis.

Every commutative ring with 1 has a maximal ideal.
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AC and Zorn

Theorem
The Axiom of Choice and Zorn’s Lemma are equivalent.

Proof.
=⇒ (sketch):
If a p.o.s. I has no maximal element, use AC to find a
function f : I → I such that

f (x) > x for x ∈ I

Use f to build a very long increasing sequence (a chain)—
which has no upper bound. (. . . ).
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Theorem
The Axiom of Choice and Zorn’s Lemma are equivalent.

Proof.
⇐= : To build a cross section X for a partition (Ai)i∈I , let Ξ
be the p.o.s. consisting of sets X satisfying

|X ∩ Ai | ≤ 1 (all i ∈ I)

ordered by inclusion.

By Zorn’s Lemma, there is a maximal X ∈ Ξ. It must be a
cross section!
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Well-Ordering

Definition
A linear ordering (L,≤) is a well ordering, if every nonempty
subset of L has a minimum.

Some well ordered subsets of R:
N; {1/n : n ∈ N}, with the reverse ordering :
· · · > 1/3 > 1/2 > 1.
{1/m + 1/n : m,n ∈ N}, with the reverse ordering;
Some not well-ordered subsets of R:
R, Q, [0,1].

Remark
Q can be well-ordered.

Problem
Can R be well-ordered?
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The Well Ordering Principle

Theorem (Zermelo)
Any set S can be well ordered.

In fact:

Theorem
The following are equivalent.

The Axiom of Choice.
Zorn’s Lemma
The Well Ordering Principle

Fréchet: An implication between two known truths is not a
new result.

Lebesgue: An implication between two false statements is
of no interest.
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The Well Ordering Principle

Theorem (Zermelo)
Any set S can be well ordered.

In fact:

Theorem
The following are equivalent.

The Axiom of Choice.
Zorn’s Lemma
The Well Ordering Principle

The Axiom of Choice is obviously true; the Well Ordering
Principle is obviously false; and who can tell about Zorn’s

Lemma?—Jerry Bona

Fréchet: An implication between two known truths is not a
new result.

Lebesgue: An implication between two false statements is
of no interest.
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From WO to AC

Theorem
The following are equivalent.

The Axiom of Choice.
Zorn’s Lemma
The Well Ordering Principle

From WO to AC: f (A) = min(A)!

From Zorn to WO . . .
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Zorn =⇒ WO

To show: S can be well ordered.

I = {(X ,≤X ) : X ⊆ S, ≤ is a well ordering of X}

How do we compare (X ,≤X ) and (Y ,≤Y )?

First try: X ⊆ Y and ≤Y agrees with ≤X on X .
The sets Xn = {−n,−n + 1, . . . ,0} with the usual ordering
are well ordered (finite!) and form a chain. Their union gives
the usual ordering of −N. Not a WO.

Second try: X ⊆ Y ; ≤Y agrees with ≤X on X ; and
Y \ X > X .
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Additive functions of one variable

Functional equation: f (x + y) = f (x) + f (y).—Solve for f .

Theorem
Any function f : R→ R which satisfies

f (x + y) = f (x) + f (y) all x , y ∈ R

is either of the form f (x) = mx or is discontinuous
everywhere.

Example
Fix a basis X for R as a vector space over Q with 1 ∈ X . For
r ∈ R, let f (r) be the coefficient of 1 in the expansion of r
with respect to the basis X . (f (1) = 1, and f (x) = 0 for
x ∈ X , x 6= 1)

These functions exist, but none has ever been constructed.
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Something for Nothing

Theorem (Hausdorf, Banach, Tarski)
A sphere of radius 1 may be decomposed into finitely many
pieces which can be reassembled to make two spheres of
radius 1.

(Some vague idea . . . :)
A variation on the Vitali decomposition, using rotations
instead of translations!
Less vague:
Stan Wagon, The Banach-Tarski Paradox, Cambridge
University Press, 1985 (paperback, 1993). ISBN
0-521-45704-1 (paperback).
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Length, Area, Volume

Measures on subsets of Rn: countably additive, invariant
under translation and rotation, normalized on the unit cube.
What about: finitely additive?

Theorem

There is no finitely additive invariant measure on R3.
There is a finitely additive invariant measure on R1 and
on R2.

Proof.
For n = 3: Banach-Tarski.
For n = 1,2 see Wagon. This also uses AC!
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More applications

A countable union of countable sets is countable.
(Needs AC!!?!)

If G is a group, A ≤ G an abelian subgroup, then there
is a subgroup B with

A ≤ B ≤ G

and CG(B) = B. (Exercise)
If h : (A,+)→ (R,+) is a homomorphism, and A ≤ B
abelian, then h extends to h′ : B → R.
R a commutative ring with 1. Suppose every prime
ideal of R is f.g. Then every ideal of R is f.g. (Tricky)

Lemma
Let I be the set of ideals in R which are not f.g. If I is
nonempty, it contains a maximal element.
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Famous Applications

Hahn-Banach: Extension of (bounded) linear functions from
subspaces.

Tychonoff: A product of compact topological spaces is
compact.



The Axiom of
Choice

Gregory
Cherlin

The Axiom

A hard choice
to make

Zorn’s Lemma

AC makes
things simple

AC makes
things
complicated

Further
Applications

References

Major Contributors, References

Georg Cantor: Theory of ordinals, cardinals, well ordering
(ca. 1883, work on sets of uniqueness for trigonometric
functions).
Ernst Zermelo, Adolf Fraenkel: axioms for set theory (1908,
1910).
Felix Hausdorff, Stefan Banach, Alfred Tarski: Paradoxical
decompositions (1914,1924).
Kazimierz Kuratowski, Max Zorn: Zorn’s Lemma
(1922,1935).
Paul Cohen: AC is not derivable from ZF (1963). (Cf. AMS
Notices August 2010.)
Hugh Woodin: Under appropriate set theoretic hypotheses,
all definable sets of reals are Lebesgue measurable (1984).
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To choose one sock from each of infinitely many pairs of
socks requires the Axiom of Choice, but for shoes the Axiom

is not needed.—Bertrand Russell.
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