The Axiom	of
Choice	

Gregory Cherlin

The Axiom

A hard choic to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Application

References

The Axiom of Choice

Gregory Cherlin

IMR Aug. 28, 2010

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

The Axiom

2 A I

Zorn's Lemma

AC makes things simple

AC makes things complicated

6 Further Applications

7 References

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Proposition

There is a function $f:\mathcal{P}(\mathbb{N})\setminus\{\emptyset\}\to\mathbb{N}$ such that

$f(A) \in A$ for $A \subseteq \mathbb{N}$, $A \neq \emptyset$

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Proposition

There is a function $f : \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\} \to \mathbb{N}$ such that

$$f(A) \in A$$
 for $A \subseteq \mathbb{N}$, $A \neq \emptyset$

Proof.

 $\min(A)$

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Proposition

There is a function $f : \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\} \to \mathbb{N}$ such that

 $f(A) \in A$ for $A \subseteq \mathbb{N}$, $A \neq \emptyset$

Corollary

There is a function $f : \mathcal{P}(\mathbb{Q}) \setminus \{\emptyset\} \to \mathbb{Q}$ such that

 $f(A) \in A$ for $A \subseteq \mathbb{Q}$, $A \neq \emptyset$

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Proposition

There is a function $f : \mathcal{P}(\mathbb{N}) \setminus \{\emptyset\} \to \mathbb{N}$ such that

 $f(A) \in A$ for $A \subseteq \mathbb{N}$, $A \neq \emptyset$

Corollary

There is a function $f : \mathcal{P}(\mathbb{Q}) \setminus \{\emptyset\} \to \mathbb{Q}$ such that

 $f(A) \in A$ for $A \subseteq \mathbb{Q}$, $A \neq \emptyset$

Problem

Is there a function $f : \mathcal{P}(\mathbb{R}) \setminus \{\emptyset\} \to \mathbb{R}$ *such that*

 $f(A) \in A$ for $A \subseteq \mathbb{R}$, $A \neq \emptyset$?

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choic to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Axiom of Choice

 $\forall S \quad \exists f: \quad \mathcal{P}(S) \setminus \{\emptyset\} \to S$ $f(A) \in A \quad \text{all} \quad A \subseteq S, A \neq \emptyset$

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Axiom of Choice

$$\forall S \quad \exists f : \quad \mathcal{P}(S) \setminus \{\emptyset\} \to S$$
$$f(A) \in A \quad \text{all} \quad A \subseteq S, A \neq \emptyset$$

EQUIVALENTLY

•
$$\forall (A_i)_{i \in I} \quad \exists (a_i)_{i \in I} \quad a_i \in A_i \qquad [\prod_i A_i \neq \emptyset];$$

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Axiom of Choice

 $\forall S \exists f: \mathcal{P}(S) \setminus \{\emptyset\} \rightarrow S$ $f(A) \in A$ all $A \subseteq S, A \neq \emptyset$

EQUIVALENTLY

- $\forall (A_i)_{i\in I} \quad \exists (a_i)_{i\in I} \quad a_i \in A_i \qquad [\prod_i A_i \neq \emptyset];$
- For all partitions $(A_i)_{i \in I}$ of A, there is a *cross-section* $X \subseteq A$: $|X \cap A_i| = 1$ all i.

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Axiom of Choice

 $\forall S \exists f: \mathcal{P}(S) \setminus \{\emptyset\} \rightarrow S$ $f(A) \in A$ all $A \subseteq S, A \neq \emptyset$

EQUIVALENTLY

• $\forall (A_i)_{i\in I} \quad \exists (a_i)_{i\in I} \quad a_i \in A_i \qquad [\prod_i A_i \neq \emptyset];$

• For all partitions $(A_i)_{i \in I}$ of A, there is a *cross-section* $X \subseteq A$: $|X \cap A_i| = 1$ all i.

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Axiom of Choice

$$\forall S \quad \exists f : \quad \mathcal{P}(S) \setminus \{\emptyset\} \to S$$
$$f(A) \in A \quad \text{all} \quad A \subseteq S, A \neq \emptyset$$

EQUIVALENTLY

• $\forall (A_i)_{i\in I} \quad \exists (a_i)_{i\in I} \quad a_i \in A_i \qquad [\prod_i A_i \neq \emptyset];$

• For all partitions $(A_i)_{i \in I}$ of A, there is a *cross-section* $X \subseteq A$: $|X \cap A_i| = 1$ all i.

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Useful and essential for infinite processes. Example: Bases in infinite dimensional vector spaces.

The Axiom of Choice

Gregory Cherlin

The Axiom

- A hard choice to make
- Zorn's Lemma
- AC makes things simple
- AC makes things complicated
- Further Applications
- References

- Useful and essential for infinite processes.
 Example: Bases in infinite dimensional vector spaces.
- 2 Nonconstructive.
 - Asserts existence only.
 - Sometimes, it is enough to know that something *exists*. Other times, we need to *find* it explicitly.

The Axiom of Choice

Gregory Cherlin

The Axiom

- A hard choice to make
- Zorn's Lemma
- AC makes things simple
- AC makes things complicated
- Further Applications
- References

- Useful and essential for infinite processes.
 Example: Bases in infinite dimensional vector spaces.
- 2 Nonconstructive.
 - Asserts existence only.
 - Sometimes, it is enough to know that something *exists.* Other times, we need to *find* it explicitly.
- Surprising ("paradoxical") consequences.

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Useful and essential for infinite processes.
 Example: Bases in infinite dimensional vector spaces.

Onconstructive.

Asserts existence only.

Sometimes, it is enough to know that something *exists.* Other times, we need to *find* it explicitly.

Surprising ("paradoxical") consequences.

Useful, but dangerous.

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Application

References

The Axion

A hard choice to make

Zorn's Lemma

- AC makes things simple
- AC makes things complicated
- Further Applications
- 7 References

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

 $A_r = r + \mathbb{Q} \subseteq \mathbb{R} \ (r \in \mathbb{R})$

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

$$A_r = r + \mathbb{Q} \subseteq \mathbb{R} \ (r \in \mathbb{R})$$

Lemma

If A_r meets A_s then $A_r = A_s$. Thus the sets A_r partition \mathbb{R} .

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

$$A_r = r + \mathbb{Q} \subseteq \mathbb{R} \ (r \in \mathbb{R})$$

Lemma

If A_r meets A_s then $A_r = A_s$. Thus the sets A_r partition \mathbb{R} .

Proof.

The relation

$$x - y \in \mathbb{Q}$$

is an *equivalence relation* on \mathbb{R} . The sets A_r are the equivalence classes for this relation.

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

$$A_r = r + \mathbb{Q} \subseteq \mathbb{R} \ (r \in \mathbb{R})$$

Lemma

If A_r meets A_s then $A_r = A_s$. Thus the sets A_r partition \mathbb{R} .

AC: There is a cross section *X* for this partition.

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

$$A_r = r + \mathbb{Q} \subseteq \mathbb{R} \ (r \in \mathbb{R})$$

Lemma

If A_r meets A_s then $A_r = A_s$. Thus the sets A_r partition \mathbb{R} .

AC: There is a cross section X for this partition.

Can you find one?

 $X + q \ (q \in \mathbb{Q})$ should partition \mathbb{R}

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Axioms for Length

 $\ell:\mathcal{P}(\mathbb{R})\to\mathbb{R}$

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Axioms for Length

 $\ell:\mathcal{P}(\mathbb{R})\to\mathbb{R}$

• $0 \leq \ell(A) \leq \infty$.

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Axioms for Length

 $\ell:\mathcal{P}(\mathbb{R})\to\mathbb{R}$

 $0 \leq \ell(A) \leq \infty.$

$$2 \quad \ell[a,b] = b - a.$$

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Axioms for Length

 $\ell:\mathcal{P}(\mathbb{R})\to\mathbb{R}$

 $0 \le \ell(A) \le \infty.$

$$2 \ \ell[a,b] = b - a.$$

3 Countable additivity:
$$\ell(\bigcup_{i=0}^{\infty} A_i) = \sum_i \ell(A_i)$$

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Axioms for Length

- $\ell:\mathcal{P}(\mathbb{R}) \to \mathbb{R}$
 - $0 \leq \ell(A) \leq \infty$.
 - (a, b] = b a.
 - Sountable additivity: $\ell(\bigcup_{i=0}^{\infty} A_i) = \sum_i \ell(A_i)$
 - Translation invariance: $\ell(A + r) = \ell(A)$.

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Axioms for Length

 $\ell:\mathcal{P}(\mathbb{R})\to\mathbb{R}$

- $0 \le \ell(A) \le \infty.$
- (a, b] = b a.
- Sountable additivity: $\ell(\bigcup_{i=0}^{\infty} A_i) = \sum_i \ell(A_i)$

• Translation invariance: $\ell(A + r) = \ell(A)$.

Proposition (Vitali (1905))

There is no such notion of length.

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Axioms for Length

- $\ell:\mathcal{P}(\mathbb{R})
 ightarrow \mathbb{R}$
 - $0 \leq \ell(A) \leq \infty$.
 - **2** $\ell[a, b] = b a.$
 - Sountable additivity: $\ell(\bigcup_{i=0}^{\infty} A_i) = \sum_i \ell(A_i)$
 - Translation invariance: $\ell(A + r) = \ell(A)$.

Let X be a cross section for the Vitali partition *contained in* [0, 1]. Claim: X cannot have a length.

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

A Vitali cross section $X \subseteq [0, 1]$ cannot have a length.

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

A Vitali cross section $X \subseteq [0, 1]$ cannot have a length.

(Properties of Length)

 $0 \le \ell(A) \le \infty.$

2 $\ell[a, b] = b - a.$

3 Countable additivity $\ell(\bigcup_i A_i) = \sum_i \ell(A_i)$

• Translation invariance $\ell(A + r) = \ell(A)$.

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

A Vitali cross section $X \subseteq [0, 1]$ cannot have a length.

(Properties of Length)

- $0 \le \ell(A) \le \infty.$
- **2** $\ell[a, b] = b a.$

3 Countable additivity
$$\ell(\bigcup_i A_i) = \sum_i \ell(A_i)$$

• Translation invariance $\ell(A + r) = \ell(A)$.

Proof.

● If ℓ(X) > 0:

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

A Vitali cross section $X \subseteq [0, 1]$ cannot have a length.

(Properties of Length)

- $0 \le \ell(A) \le \infty.$
- **2** $\ell[a, b] = b a.$
- 3 Countable additivity $\ell(\bigcup_i A_i) = \sum_i \ell(A_i)$

• Translation invariance $\ell(A + r) = \ell(A)$.

Proof.

• If $\ell(X) > 0$: $X + q \subseteq [0, 2]$ when $q \in \mathbb{Q} \cap [0, 1]$.

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

A Vitali cross section $X \subseteq [0, 1]$ cannot have a length.

(Properties of Length)

- $0 \le \ell(A) \le \infty.$
- **2** $\ell[a, b] = b a.$
- Sountable additivity $\ell(\bigcup_i A_i) = \sum_i \ell(A_i)$

• Translation invariance $\ell(A + r) = \ell(A)$.

Proof.

• If $\ell(X) > 0$: $X + q \subseteq [0, 2]$ when $q \in \mathbb{Q} \cap [0, 1]$. $2 = \ell([0, 2]) \ge \ell(X) + \ell(X) + \ell(X) + \dots$

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Application

References

A Vitali cross section $X \subseteq [0, 1]$ cannot have a length.

(Properties of Length)

 $0 \le \ell(A) \le \infty.$

- **2** $\ell[a, b] = b a.$
- 3 Countable additivity $\ell(\bigcup_i A_i) = \sum_i \ell(A_i)$

• Translation invariance $\ell(A + r) = \ell(A)$.

Proof.

• If
$$\ell(X) = 0$$
:

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Application

References

A Vitali cross section $X \subseteq [0, 1]$ cannot have a length.

(Properties of Length)

 $0 \leq \ell(A) \leq \infty.$

- **2** $\ell[a, b] = b a.$
- 3 Countable additivity $\ell(\bigcup_i A_i) = \sum_i \ell(A_i)$

• Translation invariance $\ell(A + r) = \ell(A)$.

Proof.

• If
$$\ell(X) = 0$$
:
[0,1] $\subseteq \bigcup_q (X+q)$

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Application

References

A Vitali cross section $X \subseteq [0, 1]$ cannot have a length.

(Properties of Length)

 $0 \leq \ell(A) \leq \infty.$

2 $\ell[a, b] = b - a.$

3 Countable additivity $\ell(\bigcup_i A_i) = \sum_i \ell(A_i)$

• Translation invariance $\ell(A + r) = \ell(A)$.

Proof.

• If
$$\ell(X) = 0$$
:
 $[0,1] \subseteq \bigcup_q (X+q)$
 $1 = \ell([0,1]) \le 0 + 0 + 0 + \dots$
The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

There is a good theory of length (Lebesgue measure). All axioms hold, but it is not defined for every set.

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

There is a good theory of length (Lebesgue measure). All axioms hold, but it is not defined for every set.

 $\langle \text{philosophy} \rangle$

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

There is a good theory of length (Lebesgue measure). All axioms hold, but it is not defined for every set.

(philosophy)

In practice, if a set of reals can be defined explicitly, it *does* have a well-defined length (Lebesgue measure).

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

There is a good theory of length (Lebesgue measure). All axioms hold, but it is not defined for every set.

(philosophy)

In practice, if a set of reals can be defined explicitly, it *does* have a well-defined length (Lebesgue measure).

Conclusion: Vitali cross sections cannot be defined explicitly.

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

There is a good theory of length (Lebesgue measure). All axioms hold, but it is not defined for every set.

(philosophy)

In practice, if a set of reals can be defined explicitly, it *does* have a well-defined length (Lebesgue measure).

Conclusion: Vitali cross sections cannot be defined explicitly.

 $\langle \textit{/philosophy} \rangle$

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Application

References

The Axiom

A hard choice to make

3 Zorn's Lemma

- AC makes things simple
- AC makes things complicated
- 6 Further Applications
- 7 References

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Infinite dimensional vector spaces.

Example: $F(\mathbb{R}, \mathbb{R})$ —all functions from \mathbb{R} to \mathbb{R} . Subspaces: continuous, differentiable, ...

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Infinite dimensional vector spaces.

Example: $F(\mathbb{R}, \mathbb{R})$ —all functions from \mathbb{R} to \mathbb{R} . Subspaces: continuous, differentiable, ...

What is "dimension"? What is a "basis"? Maximal linearly independent set.

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Infinite dimensional vector spaces.

Example: $F(\mathbb{R}, \mathbb{R})$ —all functions from \mathbb{R} to \mathbb{R} . Subspaces: continuous, differentiable, ...

What is "dimension"? What is a "basis"? Maximal linearly independent set. But do they exist? $f_1, f_2, ...$

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Infinite dimensional vector spaces.

Example: $F(\mathbb{R}, \mathbb{R})$ —all functions from \mathbb{R} to \mathbb{R} . Subspaces: continuous, differentiable, ...

What is "dimension"? What is a "basis"? Maximal linearly independent set. But do they exist?

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Infinite dimensional vector spaces.

Example: $F(\mathbb{R}, \mathbb{R})$ —all functions from \mathbb{R} to \mathbb{R} . Subspaces: continuous, differentiable, ...

What is "dimension"? What is a "basis"? Maximal linearly independent set. But do they exist?

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Infinite dimensional vector spaces.

Example: $F(\mathbb{R}, \mathbb{R})$ —all functions from \mathbb{R} to \mathbb{R} . Subspaces: continuous, differentiable, ...

What is "dimension"? What is a "basis"? Maximal linearly independent set. But do they exist?

- How to continue?
- How to stop?

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Infinite dimensional vector spaces.

Example: $F(\mathbb{R}, \mathbb{R})$ —all functions from \mathbb{R} to \mathbb{R} . Subspaces: continuous, differentiable, ...

What is "dimension"? What is a "basis"? Maximal linearly independent set. But do they exist?

- How to continue? AC
- How to stop?

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Infinite dimensional vector spaces.

Example: $F(\mathbb{R}, \mathbb{R})$ —all functions from \mathbb{R} to \mathbb{R} . Subspaces: continuous, differentiable, ...

What is "dimension"? What is a "basis"? Maximal linearly independent set. But do they exist?

- How to continue?
- How to stop? (ordinals)

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choic to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

 $\begin{array}{l} V \text{ a vector space} \\ \mathcal{I} = \{ X \subseteq V : X \text{ is linearly independent} \} \\ X \leq Y \iff X \subseteq Y \end{array}$

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

$$\mathcal{I} = \{ X \subseteq V : X \text{ is linearly independent} \}$$
$$X \leq Y \iff X \subseteq Y$$

Definition

 A partially ordered set (p.o.s.) is a set *I* together with a relation ≤ on *I* which is *reflexive, antisymmetric, transitive.*

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

$$\mathcal{I} = \{ X \subseteq V : X \text{ is linearly independent} \}$$
$$X \leq Y \iff X \subseteq Y$$

Definition

- A partially ordered set (p.o.s.) is a set *I* together with a relation ≤ on *I* which is *reflexive, antisymmetric, transitive.*
 - A linearly ordered set is a p.o.s. whose order relation is total: any two elements are comparable.

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

$$\mathcal{I} = \{ X \subseteq V : X \text{ is linearly independent} \} \\ X \leq Y \iff X \subseteq Y$$

Definition

- A partially ordered set (p.o.s.) is a set / together with a relation ≤ on / which is *reflexive, antisymmetric, transitive.*
 - A linearly ordered set is a p.o.s. whose order relation is total: any two elements are comparable.
 - A chain in a p.o.s. is a linearly ordered subset.

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

$$X \leq Y \iff X \subseteq Y$$

Definition

- A partially ordered set (p.o.s.) is a set / together with a relation < on / which is *reflexive*, *antisymmetric*, *transitive*.
- A linearly ordered set is a p.o.s. whose order relation is total: any two elements are comparable.
- A chain in a p.o.s. is a linearly ordered subset.
- A subset X of a p.o.s. (I, ≤) is bounded above if there is an element a of I with

$$x \leq a$$
 (all $x \in X$)

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Definition

- A partially ordered set (p.o.s.) is a set / together with a relation < on / which is reflexive, antisymmetric, transitive.
- A linearly ordered set is a p.o.s. whose order relation is total: any two elements are comparable.
- A chain in a p.o.s. is a linearly ordered subset.
- A subset X of a p.o.s. (I, ≤) is bounded above if there is an element a of I with

$$x \leq a$$
 (all $x \in X$)

Example: Independent subsets of V, with \subseteq . An *increasing* sequence of independent subsets of \mathcal{I} would form a chain—and their union is an *upper bound* for the chain.

Maximal Elements of p.o.s.

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Zorn's Lemma

Let (I, \leq) be a p.o.s. in which every chain has an upper bound. Then *I* has a maximal element.

Maximal Elements of p.o.s.

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Zorn's Lemma

Let (I, \leq) be a p.o.s. in which every chain has an upper bound. Then *I* has a maximal element.

Examples

- Independent subsets of vector spaces.
- Proper ideals in a commutative ring with 1.

Maximal Elements of p.o.s.

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Zorn's Lemma

Let (I, \leq) be a p.o.s. in which every chain has an upper bound. Then *I* has a maximal element.

Examples

- Independent subsets of vector spaces.
- Proper ideals in a commutative ring with 1.

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Application

References

The Axiom

A hard choice to mak

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Zorn's Lemma

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Let (I, \leq) be a p.o.s. in which every chain has an upper bound. Then *I* has a maximal element.

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Zorn's Lemma

Let (I, \leq) be a p.o.s. in which every chain has an upper bound. Then *I* has a maximal element.

Theorem

The Axiom of Choice and Zorn's Lemma are equivalent.

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Zorn's Lemma

Let (I, \leq) be a p.o.s. in which every chain has an upper bound. Then *I* has a maximal element.

Theorem

The Axiom of Choice and Zorn's Lemma are equivalent.

Applications

• Every vector space has a basis.

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Zorn's Lemma

Let (I, \leq) be a p.o.s. in which every chain has an upper bound. Then *I* has a maximal element.

Theorem

The Axiom of Choice and Zorn's Lemma are equivalent.

Applications

- Every vector space has a basis.
- Every commutative ring with 1 has a maximal ideal.

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Theorem

The Axiom of Choice and Zorn's Lemma are equivalent.

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choic to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Theorem

The Axiom of Choice and Zorn's Lemma are equivalent.

Proof.

 \Leftarrow : To build a cross section *X* for a partition $(A_i)_{i \in I}$, let Ξ be the p.o.s. consisting of sets *X* satisfying

$$|X \cap A_i| \leq 1$$
 (all $i \in I$)

ordered by inclusion.

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choic to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Theorem

The Axiom of Choice and Zorn's Lemma are equivalent.

Proof.

 \Leftarrow : To build a cross section *X* for a partition $(A_i)_{i \in I}$, let Ξ be the p.o.s. consisting of sets *X* satisfying

$$|X \cap A_i| \le 1$$
 (all $i \in I$)

ordered by inclusion.

By Zorn's Lemma, there is a maximal $X \in \Xi$. It must be a cross section!

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Theorem

The Axiom of Choice and Zorn's Lemma are equivalent.

Proof.

 \implies (sketch):

If a p.o.s. *I* has no maximal element, use *AC* to find a function $f: I \rightarrow I$ such that

$$f(x) > x$$
 for $x \in I$

Use f to build a *very long* increasing sequence (a chain)—which has no upper bound. (...).

Well-Ordering

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Definition

A linear ordering (L, \leq) is a well ordering, if every nonempty subset of *L* has a minimum.

Well-Ordering

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Definition

A linear ordering (L, \leq) is a well ordering, if every nonempty subset of *L* has a minimum.

Some well ordered subsets of \mathbb{R} :

 \mathbb{N} ; $\{1/n : n \in \mathbb{N}\}$, with the reverse ordering

Well-Ordering

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Definition

A linear ordering (L, \leq) is a well ordering, if every nonempty subset of *L* has a minimum.

Some well ordered subsets of \mathbb{R} : \mathbb{N} ; {1/*n* : *n* $\in \mathbb{N}$ }, with the reverse ordering {1/*m* + 1/*n* : *m*, *n* $\in \mathbb{N}$ }, with the reverse ordering;
Well-Ordering

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Definition

A linear ordering (L, \leq) is a well ordering, if every nonempty subset of *L* has a minimum.

Some well ordered subsets of \mathbb{R} : \mathbb{N} ; {1/*n* : *n* $\in \mathbb{N}$ }, with the reverse ordering {1/*m* + 1/*n* : *m*, *n* $\in \mathbb{N}$ }, with the reverse ordering;

```
Some not well-ordered subsets of \mathbb{R}: \mathbb{R}, \mathbb{Q}, [0, 1].
```

Well-Ordering

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Definition

A linear ordering (L, \leq) is a well ordering, if every nonempty subset of *L* has a minimum.

Some well ordered subsets of \mathbb{R} :

N; {1/*n* : *n* ∈ N}, with the reverse ordering { $1/m + 1/n : m, n \in \mathbb{N}$ }, with the reverse ordering; Some not well-ordered subsets of ℝ: ℝ, ℚ, [0, 1].

Remark

 \mathbb{Q} can be well-ordered.

Well-Ordering

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Definition

A linear ordering (L, \leq) is a well ordering, if every nonempty subset of *L* has a minimum.

Some well ordered subsets of \mathbb{R} :

N; {1/*n* : *n* ∈ N}, with the reverse ordering { $1/m + 1/n : m, n \in \mathbb{N}$ }, with the reverse ordering; Some not well-ordered subsets of ℝ: ℝ, ℚ, [0, 1].

Remark

 \mathbb{Q} can be well-ordered.

Problem

Can \mathbb{R} be well-ordered?

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choic to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Theorem (Zermelo)

Any set S can be well ordered.

In fact:

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choic to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Theorem (Zermelo)

Any set S can be well ordered.

In fact:

Theorem

The following are equivalent.

- The Axiom of Choice.
- Zorn's Lemma
- The Well Ordering Principle

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Theorem (Zermelo)

Any set S can be well ordered.

In fact:

Theorem

The following are equivalent.

- The Axiom of Choice.
- Zorn's Lemma
- The Well Ordering Principle

The Axiom of Choice is obviously true; the Well Ordering Principle is obviously false; and who can tell about Zorn's Lemma?—Jerry Bona

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choic to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Theorem (Zermelo)

Any set S can be well ordered.

In fact:

Theorem

The following are equivalent.

- The Axiom of Choice.
- Zorn's Lemma
- The Well Ordering Principle

Fréchet: An implication between two known truths is not a new result. Lebesgue: An implication between two false statements is of no interest.

From WO to AC

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Theorem

The following are equivalent.

- The Axiom of Choice.
- Zorn's Lemma
- The Well Ordering Principle

From WO to AC

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Application

References

Theorem

The following are equivalent.

- The Axiom of Choice.
- Zorn's Lemma
- The Well Ordering Principle

From WO to AC: $f(A) = \min(A)!$

From WO to AC

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Theorem

The following are equivalent.

- The Axiom of Choice.
- Zorn's Lemma
- The Well Ordering Principle

From *WO* to *AC*: $f(A) = \min(A)$! From Zorn to *WO*...

 $Zorn \implies WO$

> Gregory Cherlin

The Axiom

A hard choic to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

To show: S can be well ordered.

 $I = \{(X, \leq_X) : X \subseteq S, \leq \text{ is a well ordering of } X\}$

 $Zorn \implies WO$

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

To show: *S* can be well ordered.

 $I = \{(X, \leq_X) : X \subseteq S, \leq \text{ is a well ordering of } X\}$ How do we compare (X, \leq_X) and (Y, \leq_Y) ?

 $Zorn \implies WO$

> Gregory Cherlin

The Axiom

A hard choic to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

To show: *S* can be well ordered.

 $I = \{(X, \leq_X) : X \subseteq S, \leq \text{ is a well ordering of } X\}$ How do we compare (X, \leq_X) and (Y, \leq_Y) ?

First try: $X \subseteq Y$ and \leq_Y agrees with \leq_X on X.

 $7 \text{orn} \implies WO$

> Gregory Cherlin

The Axiom

A hard choic to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

To show: *S* can be well ordered.

 $I = \{(X, \leq_X) : X \subseteq S, \leq \text{ is a well ordering of } X\}$ How do we compare (X, \leq_X) and (Y, \leq_Y) ?

First try: $X \subseteq Y$ and \leq_Y agrees with \leq_X on X. Does not work.

The sets $X_n = \{-n, -n + 1, ..., 0\}$ with the usual ordering are well ordered (finite!) and form a chain. Their union gives the usual ordering of $-\mathbb{N}$. Not a WO.

 $7 \text{orn} \implies WO$

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

To show: S can be well ordered.

 $I = \{(X, \leq_X) : X \subseteq S, \leq \text{ is a well ordering of } X\}$ How do we compare (X, \leq_X) and (Y, \leq_Y) ?

First try: $X \subseteq Y$ and \leq_Y agrees with \leq_X on X. The sets $X_n = \{-n, -n+1, \dots, 0\}$ with the usual ordering are well ordered (finite!) and form a chain. Their union gives the usual ordering of $-\mathbb{N}$. Not a WO.

Second try: $X \subseteq Y$; \leq_Y agrees with \leq_X on X; and $Y \setminus X > X$.

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Application

References

The Axiom

2 A hard choice

Zorn's Lemma

AC makes things simple

5 AC makes things complicated

Further Applications

References

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Functional equation:
$$f(x + y) = f(x) + f(y)$$
.—Solve for f.

Theorem

Any function $f : \mathbb{R} \to \mathbb{R}$ which satisfies

$$f(x + y) = f(x) + f(y)$$
 all $x, y \in \mathbb{R}$

is either of the form f(x) = mx or is discontinuous everywhere.

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Functional equation:
$$f(x + y) = f(x) + f(y)$$
.—Solve for f.

Theorem

Any function $f : \mathbb{R} \to \mathbb{R}$ which satisfies

$$f(x + y) = f(x) + f(y)$$
 all $x, y \in \mathbb{R}$

is either of the form f(x) = mx or is discontinuous everywhere.

Example

Fix a basis X for \mathbb{R} as a vector space over \mathbb{Q} with $1 \in X$. For $r \in \mathbb{R}$, let f(r) be the coefficient of 1 in the expansion of r with respect to the basis X.

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Functional equation:
$$f(x + y) = f(x) + f(y)$$
.—Solve for f.

Theorem

Any function $f : \mathbb{R} \to \mathbb{R}$ which satisfies

$$f(x + y) = f(x) + f(y)$$
 all $x, y \in \mathbb{R}$

is either of the form f(x) = mx or is discontinuous everywhere.

Example

Fix a basis X for \mathbb{R} as a vector space over \mathbb{Q} with $1 \in X$. For $r \in \mathbb{R}$, let f(r) be the coefficient of 1 in the expansion of r with respect to the basis X. (f(1) = 1, and f(x) = 0 for $x \in X, x \neq 1$)

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Functional equation:
$$f(x + y) = f(x) + f(y)$$
.—Solve for f.

Theorem

Any function $f : \mathbb{R} \to \mathbb{R}$ which satisfies

$$f(x + y) = f(x) + f(y)$$
 all $x, y \in \mathbb{R}$

is either of the form f(x) = mx or is discontinuous everywhere.

Example

Fix a basis X for \mathbb{R} as a vector space over \mathbb{Q} with $1 \in X$. For $r \in \mathbb{R}$, let f(r) be the coefficient of 1 in the expansion of r with respect to the basis X. (f(1) = 1, and f(x) = 0 for $x \in X, x \neq 1$)

These functions *exist*, but none has ever been *constructed*.

Something for Nothing

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Theorem (Hausdorf, Banach, Tarski)

A sphere of radius 1 may be decomposed into finitely many pieces which can be reassembled to make two spheres of radius 1.

Something for Nothing

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Theorem (Hausdorf, Banach, Tarski)

A sphere of radius 1 may be decomposed into finitely many pieces which can be reassembled to make two spheres of radius 1.

(Some vague idea ... :)

A variation on the Vitali decomposition, using rotations instead of translations!

Something for Nothing

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Theorem (Hausdorf, Banach, Tarski)

A sphere of radius 1 may be decomposed into finitely many pieces which can be reassembled to make two spheres of radius 1.

(Some vague idea ... :)

A variation on the Vitali decomposition, using rotations instead of translations!

Less vague:

Stan Wagon, *The Banach-Tarski Paradox*, Cambridge University Press, 1985 (paperback, 1993). ISBN 0-521-45704-1 (paperback).

Length, Area, Volume

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Measures on subsets of \mathbb{R}^n : countably additive, invariant under translation and rotation, normalized on the unit cube. What about: finitely additive?

Theorem

- There is no finitely additive invariant measure on \mathbb{R}^3 .
- There is a finitely additive invariant measure on ℝ¹ and on ℝ².

Length, Area, Volume

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Measures on subsets of \mathbb{R}^n : countably additive, invariant under translation and rotation, normalized on the unit cube. What about: finitely additive?

Theorem

- There is no finitely additive invariant measure on \mathbb{R}^3 .
- There is a finitely additive invariant measure on ℝ¹ and on ℝ².

Proof.

For n = 3: Banach-Tarski.

Length, Area, Volume

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Measures on subsets of \mathbb{R}^n : countably additive, invariant under translation and rotation, normalized on the unit cube. What about: finitely additive?

Theorem

- There is no finitely additive invariant measure on \mathbb{R}^3 .
- There is a finitely additive invariant measure on ℝ¹ and on ℝ².

Proof.

For n = 3: Banach-Tarski. For n = 1, 2 see Wagon. This also uses <u>AC</u>!

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

The Axiom

- A hard choice to make
- Zorn's Lemma
- AC makes things simple
- AC makes things complicated
- 6 Further Applications
 - References

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

• A countable union of countable sets is countable. (Needs *AC*!!?!)

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

- A countable union of countable sets is countable. (Needs *AC*!!?!)
- If G is a group, A ≤ G an abelian subgroup, then there is a subgroup B with

 $A \leq B \leq G$

and $C_G(B) = B$. (Exercise)

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

- A countable union of countable sets is countable. (Needs AC!!?!)
- If G is a group, A ≤ G an abelian subgroup, then there is a subgroup B with

$$A \le B \le G$$

and $C_G(B) = B$. (Exercise)

If *h*: (*A*, +) → (ℝ, +) is a homomorphism, and *A* ≤ *B* abelian, then *h* extends to *h*' : *B* → ℝ.

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

- A countable union of countable sets is countable. (Needs AC!!?!)
- If G is a group, A ≤ G an abelian subgroup, then there is a subgroup B with

$$A \leq B \leq G$$

and $C_G(B) = B$. (Exercise)

- If *h*: (*A*, +) → (ℝ, +) is a homomorphism, and *A* ≤ *B* abelian, then *h* extends to *h*': *B* → ℝ.
- R a commutative ring with 1. Suppose every prime ideal of R is f.g. Then every ideal of R is f.g. (Tricky)

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

- A countable union of countable sets is countable. (Needs AC!!?!)
- If G is a group, A ≤ G an abelian subgroup, then there is a subgroup B with

$$A \leq B \leq G$$

and $C_G(B) = B$. (Exercise)

- If *h*: (*A*, +) → (ℝ, +) is a homomorphism, and *A* ≤ *B* abelian, then *h* extends to *h*': *B* → ℝ.
- R a commutative ring with 1. Suppose every prime ideal of R is f.g. Then every ideal of R is f.g. (Tricky)

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

- A countable union of countable sets is countable. (Needs AC!!?!)
- If G is a group, A ≤ G an abelian subgroup, then there is a subgroup B with

$$A \leq B \leq G$$

and $C_G(B) = B$. (Exercise)

- If *h*: (*A*, +) → (ℝ, +) is a homomorphism, and *A* ≤ *B* abelian, then *h* extends to *h*' : *B* → ℝ.
- R a commutative ring with 1. Suppose every prime ideal of R is f.g. Then every ideal of R is f.g. (Tricky)

Lemma

Let \mathcal{I} be the set of ideals in R which are not f.g. If \mathcal{I} is nonempty, it contains a maximal element.

Famous Applications

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Hahn-Banach: Extension of (bounded) linear functions from subspaces.

Tychonoff: A product of compact topological spaces is compact.

Major Contributors, References

The Axiom of Choice

> Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Georg Cantor: Theory of ordinals, cardinals, well ordering (ca. 1883, work on sets of uniqueness for trigonometric functions).

Ernst Zermelo, Adolf Fraenkel: axioms for set theory (1908, 1910).

Felix Hausdorff, Stefan Banach, Alfred Tarski: Paradoxical decompositions (1914,1924).

Kazimierz Kuratowski, Max Zorn: Zorn's Lemma (1922,1935).

Paul Cohen: *AC* is not derivable from *ZF* (1963). (Cf. AMS Notices August 2010.)

Hugh Woodin: Under appropriate set theoretic hypotheses, all definable sets of reals are Lebesgue measurable (1984).
The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

The Axiom of Choice

Gregory Cherlin

The Axiom

A hard choice to make

Zorn's Lemma

AC makes things simple

AC makes things complicated

Further Applications

References

Thomas J. Jech, *The Axiom of Choice*, North-Holland 1973 and Dover Publications 2008. ISBN-13: 978-0-486-46624-8 (Dover paperback).

Kenneth Ross, Informal Introduction to Set Theory, 22 pages, http://math.uoregon.edu/people/ross/SetTheory.pdf

To choose one sock from each of infinitely many pairs of socks requires the Axiom of Choice, but for shoes the Axiom is not needed.—Bertrand Russell.