Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-33-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0)

Some Fraïssé Classes of Finite Integral Metric Spaces

Gregory Cherlin

Bertinoro, May 27

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho](#page-1-0)mogeneous Graphs

[A Catalog](#page-8-0)

1 [Metrically Homogeneous Graphs](#page-1-0)

- [Finite Distance Transitive Graphs](#page-3-0)
- **[Homogeneous Graphs](#page-4-0)**
- **[Homogeneous Metric Spaces](#page-7-0)**

[A Catalog](#page-8-0)

- [Special Cases](#page-9-0) \bigcirc
- [Generic Cases](#page-14-0) \bigcirc
- [Proofs](#page-23-0) \bullet

[Conclusion](#page-30-0)

The Classification Problem

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho](#page-1-0)mogeneous Graphs

[A Catalog](#page-8-0)

[Conclusion](#page-30-0)

Γ connected, with graph metric d.

 $Γ$ is metrically homogeneous if the metric space $(Γ, d)$ is (ultra)homogeneous.

(Cameron 1998) Classify the countable metrically homogeneous graphs.

Contexts: infinite distance transitive graphs, homogeneous graphs, homogeneous metric spaces

Finite Distance Transitive Graphs

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)Finite Distance [Transitive Graphs](#page-3-0)

[A Catalog](#page-8-0)

[Conclusion](#page-30-0)

distance transitivity = metric homogeneity for pairs

Smith's Theorem:

- Imprimitive case: Bipartite or Antipodal (or a cycle) Antipodal: maximal distance δ
- Reduction to the primitive case (halving, folding)

Classification of Homogeneous Graphs

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)**[Homogeneous](#page-4-0) Graphs**

[A Catalog](#page-8-0)

Metrically homogeneous diameter ≤ 2 = Homogeneous. (The metric is the graph)

Fraïssé Constructions: Henson graphs H_n , H_n^c Lachlan-Woodrow 1980 The homogeneous graphs are

- \bullet m \cdot K_n and its complement;
- The pentagon and the line graph of $K_{3,3}$ (3 \times 3 grid)
- The Henson graphs and their complements (including the Rado graph)

Method: Induction on Amalgamation Classes

Claim: If $\mathcal A$ is an amalgamation class of finite graphs containing all graphs of order 3, I_{∞} , and K_n , then A contains every K_{n+1} -free graph.

Proof by induction on the order |A| where A is K_{n+1} -free This doesn't work directly, but a stronger statement can be proved by induction.

Induction via Amalgamation

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)**[Homogeneous](#page-4-0)** Graphs

[A Catalog](#page-8-0)

[Conclusion](#page-30-0)

 \mathcal{A}' is the set of finite graphs G such that any 1-point extension of G lies in A.

Inductive claim: Every finite graph belongs to A' .

Not making much progress yet, but . . .

1-complete: complete. 0-complete: co-complete. \mathcal{A}^p is the set of finite graphs G such that any finite p-complete graph extension of G belongs to \mathcal{A} . $\mathcal{A}^{\rho} \subseteq \mathcal{A}'$

 \mathcal{A}^{ρ} is an amalgamation class

Target: The generators of $\mathcal A$ all lie in one $\mathcal A^p$, for some p .

Lachlan's Ramsey Argument

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)**[Homogeneous](#page-4-0)** Graphs

[A Catalog](#page-8-0)

[Conclusion](#page-30-0)

How to get into A^p :

1-point extensions of a large direct sum $\oplus A_i$ =⇒ p -extensions of one of the A_i .

If A_i is itself a direct sum of generators, we get a fixed value of p.

First used for tournaments: Lachlan 1984, cf. Cherlin 1988

Homogeneous Metric Spaces

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)**[Homogeneous](#page-7-0)** Metric Spaces

[A Catalog](#page-8-0)

[Conclusion](#page-30-0)

Rational-valued Urysohn space.

Z-valued Urysohn space is a metrically homogeneous space.

Or $\mathbb{Z} \cap [0,\delta]$ -valued.

S-valued: Van Thé AMS Memoir 2010

A metrically homogeneous graph of diameter δ is: A Z-valued homogeneous metric space with bound δ , and all triangles $(1, i, i + 1)$ allowed (connectivity).

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0)

[Metrically Homogeneous Graphs](#page-1-0)

- **[Finite Distance Transitive Graphs](#page-3-0)**
- **[Homogeneous Graphs](#page-4-0)**
- [Homogeneous Metric Spaces](#page-7-0) \bullet

2 [A Catalog](#page-8-0)

- **[Special Cases](#page-9-0)**
- **[Generic Cases](#page-14-0)**
- **•** [Proofs](#page-23-0)

[Conclusion](#page-30-0)

Special Cases

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0) [Special Cases](#page-9-0)

- Diameter ≤ 2 (Lachlan/Woodrow 1980)
- Locally finite (Cameron, Macpherson)
- Γ₁-exceptional
- Imprimitive (Smith's Theorem) \bullet

The Locally Finite Case

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0) [Special Cases](#page-9-0)

[Conclusion](#page-30-0)

Finite of diameter at least 3 and vertex degree at least 3: Antipodal double covers of certain finite homogeneous graphs (Cameron 1980)

Figure: Antipodal Double cover of C₅

Infinite, Locally Finite: Tree-like $T_{r,s}$ (Macpherson 1982) Construction:

The graphs $T_{\rm cs}$

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0) [Special Cases](#page-9-0)

[Conclusion](#page-30-0)

The trees $T(r, s)$: Alternately r-branching and s-branching. Bipartite, metrically homogeneous if the two halves of the partition are kept fixed.

The graph obtained by "halving" on the r-branching side is $T_{r,s}$.

Each vertex lies at the center of a bouquet of r s-cliques.

Another point of view: the graph on the neighbors of a fixed vertex:

$$
\Gamma_1 : r \cdot K_{s-1}.
$$

From this point of view, we may also take r or s to be infinite!

Γ1

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0) [Special Cases](#page-9-0)

[Conclusion](#page-30-0)

 $\Gamma_i = \Gamma_i(v)$: Distance *i*, with the induced metric.

Remark

If distance 1 occurs, then the connected components of Γ_i are metrically homogeneous.

In particular Γ_1 is a homogeneous graph.

Exceptional Cases: finite, imprimitive, or H_n^c . The finite case is Cameron+Macpherson, the imprimitive case leads back to $T_{r,s}$ with r or s infinite, and H_n^c does not occur for $n > 2$ (Cherlin 2011)

In other words, the nonexceptional cases are

 \bullet \mathcal{L}_{∞}

 \bullet Henson graphs H_n including Rado's graph.

Imprimitive Graphs

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0) [Special Cases](#page-9-0)

[Conclusion](#page-30-0)

"Smith's Theorem" (Amato/Macpherson, Cherlin): Part I: Bipartite or antipodal, and in the antipodal case with classes of order 2 and the metric antipodal law for the pairing:

$$
d(x,y')=\delta-d(x,y)
$$

Hence no triangles of diameter greater than 2δ :

$$
d(x, z) \le d(x, y') + d(y', z) = 2\delta - d(x, y) - d(x, z)
$$

Part II: The bipartite case reduces by halving to a case in which Γ_1 is the Rado graph.

On the other hand, the antipodal case does not reduce: while distance transitivity is inherited after "folding," metric homogeneity is not.

There is also a bipartite antipodal case.

Some Amalgamation Classes

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0) [Generic Cases](#page-14-0)

Within \mathcal{A}^δ : finite integral metric spaces with bound δ :

- ${\cal A}_{\cal K,\Theta}^{\delta}$ even $:$ No odd cycles below 2 ${\cal K}+1.$
- $\mathcal{A}_{\textsf{C},\textsf{bounded}}^{\delta}$: Perimeter at most C.
- \bullet (1, δ)-constraints.

The first two classes are given (implicitly) in Komjath/Mekler/Pach 1988 as examples of constraints admitting a universal graph, which is constructed by amalgamation.

The last is a generalization of Henson's construction. A $(1, \delta)$ -space is a space in which only the distances 1 and δ occur (a vacuous condition if $\delta = 2$).

Any set S of $(1, \delta)$ -constraints may be imposed.

Mixing: $\mathcal{A}_{\mathcal{K}, \mathcal{C}; \mathcal{S}}^{\delta}$

Expectations ca. 2008

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0) [Generic Cases](#page-14-0)

- The generic case is $\mathcal{A}^\delta_{\Delta,\mathcal{S}}$ with Δ some set of forbidden triangles . . .
- and Δ is a mix of parity constraints K and size constraints C.

Not quite . . .

Variations on a theme

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory Cherlin**

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0) [Generic Cases](#page-14-0)

More examples

 $C = (C_0, C_1)$: C_0 controls large even parity, C_1 controls large odd parity

Variations on a theme

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0)

[Generic Cases](#page-14-0)

[Conclusion](#page-30-0)

More examples

- $C = (C_0, C_1)$: C_0 controls large even parity, C_1 controls large odd parity
- $K = (K_1, K_2)$: K_1 controls odd cycles at the bottom, K_2 controls odd cycles midrange.

•
$$
(i, j, k): P = i + j + k
$$

• For P odd, forbid

$$
P < 2K_1 + 1 \tag{1}
$$
\n
$$
P > 2K_2 + i \tag{2}
$$

Triangle Constraints

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0) [Generic Cases](#page-14-0)

[Conclusion](#page-30-0)

Theorem

If A is a geodesic amalgamation class of finite integral metric spaces with diameter δ , determined by triangles, then A is one of the classes

 $\mathcal{A}_{\mathcal{K},\mathcal{C};\mathcal{S}}^{\delta}$

with $K = (K_1, K_2)$ and $C = (C_0, C_1)$.

But not all such classes work

Definability in Presburger Arithmetic

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0) [Generic Cases](#page-14-0)

[Conclusion](#page-30-0)

The classes ${\cal A}_{K,C}^{\delta}$ are uniformly definable in Presburger arithmetic from the parameters $K_1, K_2, C_0, C_1, \delta$. The k -amalgamation property is amalgamation for diagrams of order at most k. With constraints of order 3, one expects k-amalgamation for some low k to imply amalgamation. (In the event, $k = 5$.)

Observation

k-amalgamation is a definable property in Presburger arithmetic for the classes $\mathcal{A}_{\mathcal{K},\mathbf{C}}^{\delta}.$

Therefore it should be expressible using inequalities and congruence conditions on linear combinations of the parameters.

Acceptable Parameters

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0) [Generic Cases](#page-14-0)

- $\delta > 3$. \bullet 1 < K₁ < K₂ < δ or K₁ = ∞ and K₂ = 0;
- \bullet 2 δ + 1 < C_{min} < C_{max} < 3 δ + 2, with one even and one odd.

Conditions for amalgamation (or 5-amalgamation):

Conditions on K, C

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory Cherlin**

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0) [Generic Cases](#page-14-0)

• If
$$
K_1 = \infty
$$
:

$$
K_2=0,\,C_1=2\delta+1,
$$

If $K_1 < \infty$ and $C < 2\delta + K_1$: $C = 2K_1 + 2K_2 + 1$, $K_1 + K_2 > \delta$, and $K_1 + 2K_2 < 2\delta$ If $C' > C + 1$ then $K_1 = K_2$ and $3K_2 = 2\delta - 1$.

If $K_1 < \infty$, and $C > 2\delta + K_1$:

$$
K_1 + 2K_2 \ge 2\delta - 1 \text{ and } 3K_2 \ge 2\delta.
$$

If $K_1 + 2K_2 = 2\delta - 1$ then $C \ge 2\delta + K_1 + 2$.
If $C' > C + 1$ then $C \ge 2\delta + K_2$.

Notes: $C = min(C_0, C_1), C' = max(C_0, C_1)$ $C' > C + 1$ means we need both C_0 and C_1 .

Conditions on S

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory Cherlin**

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0) [Generic Cases](#page-14-0)

• If
$$
K_1 = \infty
$$
:

S is $\begin{cases} \text{empty} \\ \text{if } \delta \text{ is odd, or } C_0 \leq 3\delta \end{cases}$ a set of δ -cliques $\;\;$ if δ is even, $C_0 = 3\delta + 2$

• If
$$
K_1 < \infty
$$
 and $C \leq 2\delta + K_1$:

If
$$
K_1 = 1
$$
 then S is empty.

• If
$$
K_1 < \infty
$$
, and $C > 2\delta + K_1$:

If $K_2 = \delta$ then S cannot contain a triangle of type (1, δ , If $K_1 = \delta$ then S is empty. If $C = 2\delta + 2$, then S is empty.

Antipodal Variations

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0)

[Proofs](#page-23-0)

[Conclusion](#page-30-0)

- $\mathcal{A}_{\bm{a}}^{\delta}=\mathcal{A}_{1,\delta-1;\,2\delta+2,2\delta+1;\,\emptyset}^{\delta}$ is the set of finite integral metric spaces in which no triangle has perimeter greater than 2δ .
- ${\cal A}_{\scriptstyle\!{\alpha},n}^\delta$ is the subset of ${\cal A}_{\scriptstyle\!{\alpha}}^\delta$ containing no subspace of the form $\mathit{l}_2^{\delta-1}[K_k,K_\ell]$ with $k+\ell=n$; here $\mathit{l}_2^{\delta-1}$ denotes a pair of vertices at distance $\delta - 1$ and $I_2^{\bar{\delta}-1}$ $\frac{10^{D}-1}{2}[K_k,K_\ell]$ stands for the corresponding composition, namely a graph of the form $\mathcal{K}_k\cup\mathcal{K}_\ell$ with $\mathcal{K}_k,\,\mathcal{K}_\ell$ cliques (at distance 1), and $d(x,y) = \delta - 1$ for $x \in K_k$, $y \in K_\ell$. In particular, with $k = n$, $\ell = 0$, this means K_n does not occur.

Necessity: Amalgamation diagrams

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0)

[Proofs](#page-23-0)

[Conclusion](#page-30-0)

Lemma

Let A be an amalgamation class of diameter δ determined by triangle constraints with associated parameters K_1, K_2, C, C' . Then

 $C > min(2\delta + K_1, 2K_1 + 2K_2)$

Necessity: Amalgamation diagrams

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0)

[Proofs](#page-23-0)

[Conclusion](#page-30-0)

Lemma

Let A be an amalgamation class of diameter δ determined by triangle constraints with associated parameters K_1, K_2, C, C' . Then

$$
C>\text{min}(2\delta+K_1,2K_1+2K_2)
$$

We suppose

$$
C\leq 2\delta+K_1
$$

and we show that

$$
C>2K_1+2K_2\\
$$

Set $j=\lfloor\frac{C-K_1}{2}\rfloor$, and $i=(C-K_1)-j.$ Then $1 < j \leq i \leq \delta.$

$C > min(2\delta + K_1, 2K_1 + 2K_2)$

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory Cherlin**

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0) [Proofs](#page-23-0)

In the following amalgamation, vertices u_1, u_2 force $d(a_1, a_2) = K_1$ and $|a_1 a_2 c| = C$:

 $d(c, u_1) = d(c, u_2) = i - 1$

So omit ca₂ u_1 or ca₂ u_2 , with $P > 2K_1 + 1, \ldots$

Proofs of amalgamation

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0)

[Proofs](#page-23-0)

Three amalgamation strategies:

$$
\bullet \ d^-(a,b)=\max(d(a,x)-d(a,b))
$$

$$
\bullet \, d^+(a,b) = \inf d(a,x) + d(x,b)
$$

$$
\bullet\ \widetilde{d}(a,b)=\text{inf}[C-(d(a,x)+d(a,b))]
$$

Amalgamation for ${\cal A}_{\bm{\mathsf{K}},\bm{\mathsf{C}}}^{\delta}$

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory Cherlin**

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0)

[Proofs](#page-23-0)

 \bullet If $C < 2\delta + K_1$: If $d^-(a_1, a_2) \ge K_1$ then take $d(a_1, a_2) = d^-(a_1, a_2)$. Otherwise: If $C' = C + 1$ then: If $d^+(a_1, a_2) \leq K_2$ then take $d(a_1, a_2) = min(d^+(a_1, a_2), \tilde{d}(a_1, a_2))$ If $d^-(a_1, a_2) < K_1$ and $K_2 < d^+(a_1, a_2)$ then take $d(a_1, a_2) = d(a_1, a_2)$ if $d(a_1, a_2) < K_2$ and $d(a_1, a_2) = K_1$ otherwise. if $C' > C + 1$ then: If $d^+(a_1, a_2) < K_2$ then take $d(a_1, a_2) = d^+(a_1, a_2)$; If $d^-(a_1, a_2) < K_2 \leq d^+(a_1, a_2)$ then take $d(a_1, a_2) = \begin{cases} K_2 - 1 & \text{if there is } v \in A_0 \text{ with } d(a_1, v) = d(a_2), \\ K_1 & \text{otherwise.} \end{cases}$ K_2 otherwise

 \bullet If $C > 2\delta + K_1$:

Amalgamation for ${\cal A}_{\bm{\mathsf{K}},\bm{\mathsf{C}}}^{\delta}$

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory Cherlin**

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0)

[Proofs](#page-23-0)

- If $C < 2\delta + K_1$:
- \bullet If $C > 2\delta + K_1$:
	- If $d^-(a_1, a_2) > K_1$ then take $d(a_1, a_2) = d^-(a_1, a_2)$; Otherwise:
	- If $C' = C + 1$ then:
		- If $d^+(a_1, a_2) \leq K_1$ then take $d(a_1, a_2) = min(d^+(a_1, a_2), \tilde{d}(a_1, a_2));$
		- If $d^+(a_1, a_2) > K_1$ then take

$$
d(a_1, a_2) = \begin{cases} K_1 + 1 & \text{if there is } v \in A_0 \text{ with} \\ d(a_1, v) = d(a_2, v) = \delta, \\ \text{and } K_1 + 2K_2 = 2\delta - 1 \\ K_1 & \text{otherwise} \end{cases}
$$

If $C' > C + 1$ then: If $d^+(a_1, a_2) < K_2$ then take $d(a_1, a_2) = d^+(a_1, a_2)$; If $d^+(a_1, a_2) \geq K_2$ then take $d(a_1, a_2) = min(K_2, C - 2\delta - 1).$

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0)

[Conclusion](#page-30-0)

[Metrically Homogeneous Graphs](#page-1-0)

- **[Finite Distance Transitive Graphs](#page-3-0)**
- **[Homogeneous Graphs](#page-4-0)**
- [Homogeneous Metric Spaces](#page-7-0) \bullet
- [A Catalog](#page-8-0)
- **[Special Cases](#page-9-0)**
- [Generic Cases](#page-14-0) \bullet
- [Proofs](#page-23-0) \bullet

Completeness?

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0)

[Conclusion](#page-30-0)

Good points:

- \bullet All cases with exceptional Γ_1
- δ δ < 3, probably (Amato/Cherlin/Macpherson)
- Exact as far as triangle constraints are concerned
- **Smith's Theorem**
- Weak points
	- **Smith's Theorem**
		- Bipartite to be completed inductively
		- Antipodal description may be incomplete
	- Induction to Γ_i is not always available

In fact, for antipodal graphs omitting K_n , triangles and $(1, \delta)$ -constraints do not suffice. That class was found on an ad hoc basis. (And is invisible in diameter 3.)

Toward a classification theorem

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0)

[Conclusion](#page-30-0)

Strategy?

- \bullet (Step 0) Prepare diameter 4 and Γ_2 generally? (Prudent)
- (Step 1) Characterize triangles occurring in amalgamation classes
- (Step 2) Show that if the triangle constraints are as expected, then Γ_i has the expected constraints.
- (Step 3) Assuming the first two conditions, characterize Γ.

(Works in diameter 3)

. . . With Lachlan's Ramsey method in reserve.

Furthermore

Some Fraïssé Classes of Finite Integral [Metric Spaces](#page-0-0)

> **Gregory** Cherlin

[Metrically Ho-](#page-1-0)

[A Catalog](#page-8-0)

[Conclusion](#page-30-0)

No need to wait for a classification:

- Ramsey theory for these homogeneous metric spaces
- **•** Topological dynamics
- Other aspects of the automorphism group (normal subgroups, subgroups of small index)