Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous

A Catalog

Special Cases Generic Cases Proofs

Conclusion

Some Fraïssé Classes of Finite Integral Metric Spaces

Gregory Cherlin

Bertinoro, May 27

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

1

Metrically Homogeneous Graphs

Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

Metrically Homogeneous Graphs

- Finite Distance Transitive Graphs
- Homogeneous Graphs
- Homogeneous Metric Spaces

A Catalog

- Special Cases
- Generic Cases
- Proofs

3 Conclusion

The Classification Problem

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Homogeneous Graphs

Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

 Γ connected, with graph metric d.

 Γ is metrically homogeneous if the metric space (Γ , d) is (ultra)homogeneous.

(Cameron 1998) Classify the countable metrically homogeneous graphs.

Contexts: infinite distance transitive graphs, homogeneous graphs, homogeneous metric spaces

Finite Distance Transitive Graphs

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Homogeneous Graphs

Finite Distance Transitive Graphs

Homogeneous Graphs Homogeneous Metric Spaces

A Catalog

Special Cases Generic Cases Proofs

Conclusion

distance transitivity = metric homogeneity for pairs

Smith's Theorem:

- Imprimitive case: Bipartite or Antipodal (or a cycle) Antipodal: maximal distance δ
- Reduction to the primitive case (halving, folding)

Classification of Homogeneous Graphs

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Homogeneous Graphs

Finite Distance Transitive Graph

Homogeneous Graphs

Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

Metrically homogeneous diameter \leq 2 = Homogeneous. (The metric *is* the graph)

Fraïssé Constructions: Henson graphs H_n , H_n^c Lachlan-Woodrow 1980 The homogeneous graphs are

- $m \cdot K_n$ and its complement;
- The pentagon and the line graph of $K_{3,3}$ (3 × 3 grid)
- The Henson graphs and their complements (including the Rado graph)

Method: Induction on Amalgamation Classes

Claim: If A is an amalgamation class of finite graphs containing all graphs of order 3, I_{∞} , and K_n , then A contains every K_{n+1} -free graph.

Proof by induction on the order |A| where A is K_{n+1} -free This doesn't work directly, but a stronger statement can be proved by induction.

Induction via Amalgamation

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Homogeneous Graphs

Finite Distance Transitive Graphs

Homogeneous Graphs

Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

 \mathcal{A}' is the set of finite graphs *G* such that any 1-point extension of *G* lies in \mathcal{A} .

Inductive claim: Every finite graph belongs to \mathcal{A}' .

Not making much progress yet, but ...

1-complete: complete. 0-complete: co-complete. \mathcal{A}^{p} is the set of finite graphs *G* such that any finite *p*-complete graph extension of *G* belongs to \mathcal{A} . $\mathcal{A}^{p} \subseteq \mathcal{A}'$

 \mathcal{A}^{ρ} is an amalgamation class

Target: The generators of A all lie in one A^p , for some p.

Lachlan's Ramsey Argument

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance

Transitive Graph Homogeneous

Graphs Homogeneous

Metric Spaces

Special Cases Generic Cases Proofs

Conclusion

How to get into \mathcal{A}^{p} :

1-point extensions of a large direct sum $\oplus A_i$ \implies *p*-extensions of one of the A_i .

If A_i is itself a direct sum of generators, we get a fixed value of p.

First used for tournaments: Lachlan 1984, cf. Cherlin 1988

Homogeneous Metric Spaces

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs

Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

Rational-valued Urysohn space.

 $\ensuremath{\mathbb{Z}}\xspace$ -valued Urysohn space is a metrically homogeneous space.

Or $\mathbb{Z} \cap [0, \delta]$ -valued.

S-valued: Van Thé AMS Memoir 2010

A metrically homogeneous graph of diameter δ is: A \mathbb{Z} -valued homogeneous metric space with bound δ , and all triangles (1, i, i + 1) allowed (connectivity).

Some Fraïssé Classes of Finite Integral Metric Spaces

Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog

Special Cases Generic Cases Proofs

Conclusion

Metrically Homogeneous Graphs

- Finite Distance Transitive Graphs
- Homogeneous Graphs
- Homogeneous Metric Spaces

A Catalog

2

- Special Cases
- Generic Cases
- Proofs

Conclusion

Special Cases

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs

Homogeneous Graphs Homogeneous

A Catalog Special Cases Generic Cases Proofs

Conclusion

- Diameter \leq 2 (Lachlan/Woodrow 1980)
- Locally finite (Cameron, Macpherson)
- Γ₁-exceptional
- Imprimitive (Smith's Theorem)

The Locally Finite Case

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

Finite of diameter at least 3 and vertex degree at least 3: Antipodal double covers of certain finite homogeneous graphs (Cameron 1980)

Figure: Antipodal Double cover of C₅

Infinite, Locally Finite: Tree-like $T_{r,s}$ (Macpherson 1982) Construction:

The graphs $T_{r,s}$

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Homogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

The trees T(r, s): Alternately *r*-branching and *s*-branching. Bipartite, metrically homogeneous if the two halves of the partition are kept fixed.

The graph obtained by "halving" on the *r*-branching side is $T_{r,s}$.

Each vertex lies at the center of a bouquet of r s-cliques.

Another point of view: the graph on the neighbors of a fixed vertex:

$$T_1: r \cdot K_{s-1}.$$

From this point of view, we may also take r or s to be infinite!

Γ₁

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Homogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

 $\Gamma_i = \Gamma_i(v)$: Distance *i*, with the induced metric.

Remark

If distance 1 occurs, then the connected components of Γ_i are metrically homogeneous.

In particular Γ_1 is a homogeneous graph.

Exceptional Cases: finite, imprimitive, or H_n^c . The finite case is Cameron+Macpherson, the imprimitive case leads back to $T_{r,s}$ with *r* or *s* infinite, and H_n^c does not occur for n > 2 (Cherlin 2011)

In other words, the nonexceptional cases are

• *I*_∞

• Henson graphs H_n including Rado's graph.

Imprimitive Graphs

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Homogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

"Smith's Theorem" (Amato/Macpherson, Cherlin): Part I: Bipartite or antipodal, and in the antipodal case with classes of order 2 and the metric antipodal law for the pairing:

$$d(\mathbf{x},\mathbf{y}')=\delta-d(\mathbf{x},\mathbf{y})$$

Hence no triangles of diameter greater than 2δ :

$$d(x,z) \leq d(x,y') + d(y',z) = 2\delta - d(x,y) - d(x,z)$$

Part II: The bipartite case reduces by halving to a case in which Γ_1 is the Rado graph.

On the other hand, the antipodal case does not reduce: while distance transitivity is inherited after "folding," metric homogeneity is not.

There is also a bipartite antipodal case.

Some Amalgamation Classes

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

Within \mathcal{A}^{δ} : finite integral metric spaces with bound δ :

- $\mathcal{A}^{\delta}_{\mathcal{K},\text{even}}$: No odd cycles below $2\mathcal{K} + 1$.
- $\mathcal{A}_{c,\text{bounded}}^{\delta}$: Perimeter at most *C*.
- $(1, \delta)$ -constraints.

The first two classes are given (implicitly) in Komjath/Mekler/Pach 1988 as examples of constraints admitting a universal graph, which is constructed by amalgamation.

The last is a generalization of Henson's construction. A $(1, \delta)$ -space is a space in which only the distances 1 and δ occur (a vacuous condition if $\delta = 2$).

Any set S of $(1, \delta)$ -constraints may be imposed.

Mixing: $\mathcal{A}^{\delta}_{\mathcal{K},\mathcal{C};\mathcal{S}}$

Expectations ca. 2008

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

- The generic case is $\mathcal{A}^\delta_{\Delta,\mathcal{S}}$ with Δ some set of forbidden triangles . . .
- and ∆ is a mix of parity constraints K and size constraints C.

Not quite ...

Variations on a theme

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous

Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases

Conclusion

More examples

• $C = (C_0, C_1)$: C_0 controls large even parity, C_1 controls large odd parity

Variations on a theme

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs

Graphs Homogeneous Metric Spaces

A Catalog Special Cases

Generic Cases Proofs

Conclusion

More examples

- $C = (C_0, C_1)$: C_0 controls large even parity, C_1 controls large odd parity
- *K* = (*K*₁, *K*₂): *K*₁ controls odd cycles at the bottom, *K*₂ controls odd cycles midrange.

•
$$(i, j, k)$$
: $P = i + j + k$

• For P odd, forbid

$$P < 2K_1 + 1 \tag{1}$$

$$P > 2K_2 + i \tag{2}$$

Triangle Constraints

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous

A Catalog Special Cases Generic Cases Proofs

Conclusion

Theorem

If A is a geodesic amalgamation class of finite integral metric spaces with diameter δ , determined by triangles, then A is one of the classes

 $\mathcal{A}^{\delta}_{\mathcal{K},\mathcal{C};\mathcal{S}}$

with $K = (K_1, K_2)$ and $C = (C_0, C_1)$.

But not all such classes work

Definability in Presburger Arithmetic

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

The classes $\mathcal{A}_{K,C}^{\delta}$ are uniformly definable in Presburger arithmetic from the parameters $K_1, K_2, C_0, C_1, \delta$. The *k*-amalgamation property is amalgamation for diagrams of order at most *k*. With constraints of order 3, one expects *k*-amalgamation for some low *k* to imply amalgamation. (In the event, k = 5.)

Observation

k-amalgamation is a definable property in Presburger arithmetic for the classes $\mathcal{A}_{K,C}^{\delta}$.

Therefore it should be expressible using inequalities and congruence conditions on linear combinations of the parameters.

Acceptable Parameters

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous

Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

- δ ≥ 3.
 1 < K₁ < K₂ < δ or K₁ = ∞ and K₂ = 0;
- $2\delta + 1 \le C_{min} < C_{max} \le 3\delta + 2$, with one even and one odd.

Conditions for amalgamation (or 5-amalgamation):

Conditions on K, C

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

• If
$$K_1 = \infty$$
:

$$K_2 = 0, C_1 = 2\delta + 1,$$

• If $K_1 < \infty$ and $C \le 2\delta + K_1$: $C = 2K_1 + 2K_2 + 1$, $K_1 + K_2 \ge \delta$, and $K_1 + 2K_2 \le 2\delta - \delta$ If C' > C + 1 then $K_1 = K_2$ and $3K_2 = 2\delta - 1$.

• If $K_1 < \infty$, and $C > 2\delta + K_1$:

$$K_1 + 2K_2 \ge 2\delta - 1 \text{ and } 3K_2 \ge 2\delta.$$

If $K_1 + 2K_2 = 2\delta - 1 \text{ then } C \ge 2\delta + K_1 + 2.$
If $C' > C + 1$ then $C \ge 2\delta + K_2.$

Notes: $C = \min(C_0, C_1), C' = \max(C_0, C_1)$ C' > C + 1 means we need both C_0 and C_1 .

Conditions on S

Some Fraïssé Classes of Finite Integral Metric Spaces

Generic Cases

• If
$$K_1 = \infty$$
:

 $\mathcal{S} \text{ is } \begin{cases} \text{empty} & \text{ it } \delta \text{ is oau, or } \mathbf{U}_0 \geq \mathbf{U}_0 \\ \text{a set of } \delta \text{-cliques} & \text{if } \delta \text{ is even, } \mathbf{C}_0 = 3\delta + 2 \end{cases}$

• If
$$K_1 < \infty$$
 and $C \le 2\delta + K_1$:

f
$$K_1 = 1$$
 then S is empty.

• If
$$K_1 < \infty$$
, and $C > 2\delta + K_1$:

If $K_2 = \delta$ then S cannot contain a triangle of type $(1, \delta,$ If $K_1 = \delta$ then \mathcal{S} is empty. If $C = 2\delta + 2$, then S is empty.

Antipodal Variations

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

- *A*^δ_a = *A*^δ_{1,δ-1;2δ+2,2δ+1;∅} is the set of finite integral metric spaces in which no triangle has perimeter greater than 2δ.
- $\mathcal{A}_{a,n}^{\delta}$ is the subset of \mathcal{A}_{a}^{δ} containing no subspace of the form $I_{2}^{\delta-1}[K_{k}, K_{\ell}]$ with $k + \ell = n$; here $I_{2}^{\delta-1}$ denotes a pair of vertices at distance $\delta 1$ and $I_{2}^{\delta-1}[K_{k}, K_{\ell}]$ stands for the corresponding composition, namely a graph of the form $K_{k} \cup K_{\ell}$ with K_{k} , K_{ℓ} cliques (at distance 1), and $d(x, y) = \delta 1$ for $x \in K_{k}$, $y \in K_{\ell}$. In particular, with k = n, $\ell = 0$, this means K_{n} does not occur.

Necessity: Amalgamation diagrams

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

Lemma

Let A be an amalgamation class of diameter δ determined by triangle constraints with associated parameters K_1, K_2, C, C' . Then

 $C > \min(2\delta + K_1, 2K_1 + 2K_2)$

Necessity: Amalgamation diagrams

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

Lemma

Let A be an amalgamation class of diameter δ determined by triangle constraints with associated parameters K_1, K_2, C, C' . Then

$$\mathcal{C} > \min(2\delta + \mathcal{K}_1, 2\mathcal{K}_1 + 2\mathcal{K}_2)$$

We suppose

$$C \leq 2\delta + K_1$$

and we show that

$$C > 2K_1 + 2K_2$$

Set $j = \lfloor \frac{C-K_1}{2} \rfloor$, and $i = (C - K_1) - j$. Then $1 < j \le i \le \delta$.

$C > \min(2\delta + K_1, 2K_1 + 2K_2)$

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

In the following amalgamation, vertices u_1, u_2 force $d(a_1, a_2) = K_1$ and $|a_1 a_2 c| = C$:

 $d(c,u_1)=d(c,u_2)=i-1$

So omit ca_2u_1 or ca_2u_2 , with $P \ge 2K_1 + 1, \ldots$

Proofs of amalgamation

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous

A Catalog Special Cases Generic Cases Proofs

Conclusion

Three amalgamation strategies:

•
$$d^{-}(a,b) = \max(d(a,x) - d(a,b))$$

•
$$d^+(a,b) = \inf d(a,x) + d(x,b)$$

•
$$\tilde{d}(a,b) = \inf[C - (d(a,x) + d(a,b))]$$

Amalgamation for $\mathcal{A}^{\delta}_{\mathcal{K},\mathcal{C}}$

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

• If $C \leq 2\delta + K_1$:

 If d[−](a₁, a₂) ≥ K₁ then take d(a₁, a₂) = d[−](a₁, a₂). Otherwise:

• If C' = C + 1 then:

- If $d^+(a_1, a_2) \le K_2$ then take $d(a_1, a_2) = \min(d^+(a_1, a_2), \tilde{d}(a_1, a_2))$
- If $d^{-}(a_1, a_2) < K_1$ and $K_2 < d^{+}(a_1, a_2)$ then take
 - $d(a_1, a_2) = \tilde{d}(a_1, a_2)$ if $\tilde{d}(a_1, a_2) \le K_2$ and

 $d(a_1, a_2) = K_1$ otherwise.

• if C' > C + 1 then:

- If $d^+(a_1, a_2) < K_2$ then take $d(a_1, a_2) = d^+(a_1, a_2)$;
- If $d^{-}(a_1, a_2) < K_2 \leq d^{+}(a_1, a_2)$ then take

 $d(a_1,a_2) = egin{cases} \mathcal{K}_2 - 1 & ext{if there is } v \in \mathcal{A}_0 ext{ with } d(a_1,v) = d(a_2,v) \ \mathcal{K}_2 & ext{otherwise} \end{cases}$

• If $C > 2\delta + K_1$:

Amalgamation for $\mathcal{A}^{\delta}_{\mathcal{K},\mathcal{C}}$

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous

A Catalog

Special Cases Generic Cases Proofs

Conclusion

- If $C \leq 2\delta + K_1$:
- If $C > 2\delta + K_1$:
 - If d⁻(a₁, a₂) > K₁ then take d(a₁, a₂) = d⁻(a₁, a₂);
 Otherwise:
 - If C' = C + 1 then:
 - If $d^+(a_1, a_2) \le K_1$ then take $d(a_1, a_2) = \min(d^+(a_1, a_2), \tilde{d}(a_1, a_2));$
 - If $d^+(a_1, a_2) > K_1$ then take

$$d(a_1, a_2) = \begin{cases} K_1 + 1 & \text{if there is } v \in A_0 \text{ with} \\ d(a_1, v) = d(a_2, v) = \delta, \\ \text{and } K_1 + 2K_2 = 2\delta - 1 \\ K_1 & \text{otherwise} \end{cases}$$

- If C' > C + 1 then:
 - If $d^+(a_1, a_2) < K_2$ then take $d(a_1, a_2) = d^+(a_1, a_2)$;
 - If $d^+(a_1, a_2) \ge K_2$ then take $d(a_1, a_2) = \min(K_2, C 2\delta 1)$.

Some Fraïssé Classes of Finite Integral Metric Spaces

Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous

A Catalog Special Cases Generic Cases Proofs

Conclusion

Metrically Homogeneous Graphs

- Finite Distance Transitive Graphs
- Homogeneous Graphs
- Homogeneous Metric Spaces
- A Catalog
- Special Cases
- Generic Cases
- Proofs

Completeness?

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Ho mogeneous Graphs Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

Good points:

- All cases with exceptional Γ_1
- $\delta \leq$ 3, probably (Amato/Cherlin/Macpherson)
- Exact as far as triangle constraints are concerned
- Smith's Theorem
- Weak points
 - Smith's Theorem
 - Bipartite to be completed inductively
 - Antipodal description may be incomplete
 - Induction to Γ_i is not always available

In fact, for antipodal graphs omitting K_n , triangles and $(1, \delta)$ -constraints do not suffice. That class was found on an ad hoc basis. (And is invisible in diameter 3.)

Toward a classification theorem

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Homogeneous Graphs

Transitive Graph Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

Strategy?

- (Step 0) Prepare diameter 4 and Γ₂ generally? (Prudent)
- (Step 1) Characterize triangles occurring in amalgamation classes
- (Step 2) Show that if the triangle constraints are as expected, then Γ_i has the expected constraints.
- (Step 3) Assuming the first two conditions, characterize Γ.

(Works in diameter 3)

... With Lachlan's Ramsey method in reserve.

Furthermore

Some Fraïssé Classes of Finite Integral Metric Spaces

> Gregory Cherlin

Metrically Homogeneous Graphs

Finite Distance Transitive Graphs Homogeneous Graphs Homogeneous Metric Spaces

A Catalog Special Cases Generic Cases Proofs

Conclusion

No need to wait for a classification:

- Ramsey theory for these homogeneous metric spaces
- Topological dynamics
- Other aspects of the automorphism group (normal subgroups, subgroups of small index)