
1 Metrically Homogeneous Graphs

The Classification Problem
Γ connected, with graph metricd.
Γ is metrically homogeneousif the metric space(Γ, d) is (ultra)homogeneous.

(Cameron 1998) Classify the countable metrically homogeneous graphs.
Contexts: infinite distance transitive graphs, homogeneous graphs, homogeneous

metric spaces

1.1 Finite Distance Transitive Graphs

Finite Distance Transitive Graphs
distance transitivity= metric homogeneity for pairs

Smith’s Theorem:
• Imprimitive case: Bipartite or Antipodal (or a cycle)
Antipodal: maximal distanceδ
• Reduction to the primitive case (halving, folding)

1.2 Homogeneous Graphs

Classification of Homogeneous Graphs
Metrically homogeneous diameter≤ 2 = Homogeneous.
(The metricis the graph)

Fraı̈ssé Constructions: Henson graphsHn, Hc
n

Lachlan-Woodrow 1980 The homogeneous graphs are

• m ·Kn and its complement;

• The pentagon and the line graph ofK3,3 (3× 3 grid)

• The Henson graphs and their complements (including the Radograph)

Method: Induction on Amalgamation Classes
Claim: If A is an amalgamation class of finite graphs containing all graphs of order

3, I∞, andKn, thenA contains everyKn+1-free graph.
Proof by induction on the order|A| whereA isKn+1-free
This doesn’t work directly, but a stronger statement can be proved by induction.

Induction via Amalgamation
A′ is the set of finite graphsG such that any1-point extension ofG lies inA.
Inductive claim: Every finite graph belongs toA′.

Not making much progress yet, but . . .

1-complete: complete.0-complete: co-complete.
Ap is the set of finite graphsG such that any finitep-complete graph extension of

G belongs toA.



Ap ⊆ A′

Ap is an amalgamation class

Target: The generators ofA all lie in oneAp, for somep.

Lachlan’s Ramsey Argument
How to get intoAp:

1-point extensions of a large direct sum⊕Ai

=⇒
p-extensions of one of theAi.

If Ai is itself a direct sum of generators, we get a fixed value ofp.

First used for tournaments: Lachlan 1984, cf. Cherlin 1988

1.3 Homogeneous Metric Spaces

Homogeneous Metric Spaces
Rational-valued Urysohn space.
Z-valued Urysohn space is a metrically homogeneous space.
Or Z ∩ [0, δ]-valued.
S-valued: Van Thé AMS Memoir 2010

A metrically homogeneous graph of diameterδ is:
A Z-valued homogeneous metric space with boundδ, and all triangles(1, i, i+ 1)

allowed (connectivity).

2 A Catalog

2.1 Special Cases

Special Cases

• Diameter≤ 2 (Lachlan/Woodrow 1980)

• Locally finite (Cameron, Macpherson)

• Γ1-exceptional

• Imprimitive (Smith’s Theorem)

The Locally Finite Case
Finite of diameter at least3 and vertex degree at least3: Antipodal double covers

of certain finite homogeneous graphs (Cameron 1980)
Infinite, Locally Finite: Tree-likeTr,s (Macpherson 1982)
Construction:
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Figure 1: Antipodal Double cover ofC5

The graphsTr,s

The treesT (r, s): Alternatelyr-branching ands-branching.
Bipartite, metrically homogeneous if the two halves of the partition are kept fixed.

The graph obtained by “halving” on ther-branching side isTr,s.
Each vertex lies at the center of a bouquet ofr s-cliques.

Another point of view: the graph on the neighbors of a fixed vertex:
Γ1 : r ·Ks−1.

From this point of view, we may also taker or s to be infinite!

Γ1

Γi = Γi(v): Distancei, with the induced metric.

Remark 1. If distance1 occurs, then the connected components ofΓi are metrically
homogeneous.

In particularΓ1 is a homogeneous graph.

Exceptional Cases: finite, imprimitive, orHc
n.

The finite case is Cameron+Macpherson, the imprimitive caseleads back toTr,s

with r or s infinite, andHc
n does not occur forn > 2 (Cherlin 2011)

In other words, the nonexceptional cases are

• I∞

• Henson graphsHn including Rado’s graph.

Imprimitive Graphs
“Smith’s Theorem” (Amato/Macpherson, Cherlin):
Part I: Bipartite or antipodal, and in the antipodal case with classes of order2 and

the metric antipodal law for the pairing:

d(x, y′) = δ − d(x, y)
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Hence no triangles of diameter greater than2δ:

d(x, z) ≤ d(x, y′) + d(y′, z) = 2δ − d(x, y)− d(x, z)

Part II: The bipartite case reduces by halving to a case in which Γ1 is the Rado
graph.

On the other hand,the antipodal case does not reduce:while distance transitivity
is inherited after “folding,” metric homogeneity is not.

There is also a bipartite antipodal case.

2.2 Generic Cases

Some Amalgamation Classes
Within Aδ: finite integral metric spaces with boundδ:

• Aδ
K,even: No odd cycles below2K + 1.

• Aδ

C,bounded: Perimeter at mostC.

• (1, δ)-constraints.

The first two classes are given (implicitly) in Komjath/Mekler/Pach 1988 as exam-
ples of constraints admitting a universal graph, which is constructed by amalgamation.

The last is a generalization of Henson’s construction. A(1, δ)-space is a space in
which only the distances1 andδ occur (a vacuous condition ifδ = 2).

Any setS of (1, δ)-constraints may be imposed.

Mixing: Aδ
K,C;S

Expectations ca. 2008

• The generic case isAδ
∆,S with ∆ some set of forbidden triangles . . .

• and∆ is a mix of parity constraintsK and size constraintsC.

Not quite . . .

Variations on a theme
More examples

• C = (C0, C1): C0 controls large even parity,C1 controls large odd parity

• K = (K1,K2): K1 controls odd cycles at the bottom,K2 controls odd cycles
midrange.

– (i, j, k): P = i+ j + k

– ForP odd, forbid

P < 2K1 + 1 (1)

P > 2K2 + i (2)
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Triangle Constraints

Theorem 1. If A is a geodesic amalgamation class of finite integral metric spaces with
diameterδ, determined by triangles, thenA is one of the classes

Aδ
K,C;S

with K = (K1,K2) andC = (C0, C1).

But not all such classes work . . . .

Definability in Presburger Arithmetic
The classesAδ

K,C are uniformly definable in Presburger arithmetic from the pa-
rametersK1,K2, C0, C1, δ.

Thek-amalgamation propertyis amalgamation for diagrams of order at mostk.
With constraints of order3, one expectsk-amalgamation for some lowk to imply

amalgamation. (In the event,k = 5.)

Observation 1. k-amalgamation is a definable property in Presburger arithmetic for
the classesAδ

K,C .

Therefore it should be expressible using inequalities and congruence conditions on
linear combinations of the parameters.

Acceptable Parameters

• δ ≥ 3.

• 1 ≤ K1 ≤ K2 ≤ δ orK1 = ∞ andK2 = 0;

• 2δ + 1 ≤ Cmin < Cmax ≤ 3δ + 2, with one even and one odd.

Conditions for amalgamation (or5-amalgamation):

Conditions onK, C

• If K1 = ∞:

K2 = 0, C1 = 2δ + 1,

• If K1 < ∞ andC ≤ 2δ +K1:

C = 2K1 + 2K2 + 1, K1 +K2 ≥ δ, andK1 + 2K2 ≤ 2δ − 1

If C′ > C + 1 thenK1 = K2 and3K2 = 2δ − 1.
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• If K1 < ∞, andC > 2δ +K1:

K1 + 2K2 ≥ 2δ − 1 and3K2 ≥ 2δ.
If K1 + 2K2 = 2δ − 1 thenC ≥ 2δ +K1 + 2.
If C′ > C + 1 thenC ≥ 2δ +K2.

Notes:
C = min(C0, C1), C′ = max(C0, C1)
C′ > C + 1 means we need bothC0 andC1.

Conditions onS

• If K1 = ∞:

S is

{

empty if δ is odd, orC0 ≤ 3δ

a set ofδ-cliques ifδ is even,C0 = 3δ + 2

• If K1 < ∞ andC ≤ 2δ +K1:

If K1 = 1 thenS is empty.

• If K1 < ∞, andC > 2δ +K1:

If K2 = δ thenS cannot contain a triangle of type(1, δ, δ).

If K1 = δ thenS is empty.

If C = 2δ + 2, thenS is empty.

2.3 Proofs

Antipodal Variations

• Aδ
a = Aδ

1,δ−1; 2δ+2,2δ+1; ∅
is the set of finite integral metric spaces in which no

triangle has perimeter greater than2δ.

• Aδ
a,n is the subset ofAδ

a containing no subspace of the formIδ−1
2 [Kk,Kℓ] with

k+ℓ = n; hereIδ−1
2 denotes a pair of vertices at distanceδ−1 andIδ−1

2 [Kk,Kℓ]
stands for the corresponding composition, namely a graph ofthe formKk ∪Kℓ

with Kk, Kℓ cliques (at distance 1), andd(x, y) = δ − 1 for x ∈ Kk, y ∈ Kℓ.
In particular, withk = n, ℓ = 0, this meansKn does not occur.
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Necessity: Amalgamation diagrams

Lemma 2. Let A be an amalgamation class of diameterδ determined by triangle
constraints with associated parametersK1,K2, C, C

′. Then

C > min(2δ +K1, 2K1 + 2K2)

We suppose
C ≤ 2δ +K1

and we show that
C > 2K1 + 2K2

Setj = ⌊C−K1

2
⌋, andi = (C −K1)− j. Then1 < j ≤ i ≤ δ.

C > min(2δ +K1, 2K1 + 2K2)
In the following amalgamation, verticesu1, u2 forced(a1, a2) = K1 and|a1a2c| =

C:

d(c, u1) = d(c, u2) = i− 1

So omitca2u1 or ca2u2, with P ≥ 2K1 + 1, . . .

Proofs of amalgamation
Three amalgamation strategies:

• d−(a, b) = max(d(a, x)− d(a, b))

• d+(a, b) = inf d(a, x) + d(x, b)

• d̃(a, b) = inf[C − (d(a, x) + d(a, b))]
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Amalgamation for Aδ
K,C

• If C ≤ 2δ +K1:

– If d−(a1, a2) ≥ K1 then taked(a1, a2) = d−(a1, a2).

Otherwise:

– If C′ = C + 1 then:

∗ If d+(a1, a2) ≤ K2 then taked(a1, a2) = min(d+(a1, a2), d̃(a1, a2))

∗ If d−(a1, a2) < K1 andK2 < d+(a1, a2) then taked(a1, a2) =
d̃(a1, a2) if d̃(a1, a2) ≤ K2 andd(a1, a2) = K1 otherwise.

– if C′ > C + 1 then:

∗ If d+(a1, a2) < K2 then taked(a1, a2) = d+(a1, a2);

∗ If d−(a1, a2) < K2 ≤ d+(a1, a2) then take

d(a1, a2) =

{

K2 − 1 if there isv ∈ A0 with d(a1, v) = d(a2, v) = δ

K2 otherwise

• If C > 2δ +K1:

• If C > 2δ +K1:

– If d−(a1, a2) > K1 then taked(a1, a2) = d−(a1, a2);

Otherwise:

– If C′ = C + 1 then:

∗ If d+(a1, a2) ≤ K1 then taked(a1, a2) = min(d+(a1, a2), d̃(a1, a2));

∗ If d+(a1, a2) > K1 then take

d(a1, a2) =



















K1 + 1 if there isv ∈ A0 with

d(a1, v) = d(a2, v) = δ,

andK1 + 2K2 = 2δ − 1

K1 otherwise

– If C′ > C + 1 then:

∗ If d+(a1, a2) < K2 then taked(a1, a2) = d+(a1, a2);

∗ If d+(a1, a2) ≥ K2 then taked(a1, a2) = min(K2, C − 2δ − 1).

3 Conclusion

Completeness?
Good points:

• All cases with exceptionalΓ1
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• δ ≤ 3, probably (Amato/Cherlin/Macpherson)

• Exact as far as triangle constraints are concerned

• Smith’s Theorem

Weak points

• Smith’s Theorem

– Bipartite to be completed inductively

– Antipodal description may be incomplete

• Induction toΓi is not always available

In fact, for antipodal graphs omittingKn, triangles and(1, δ)-constraints do not
suffice.

That class was found on an ad hoc basis. (And is invisible in diameter 3.)

Toward a classification theorem
Strategy?

• (Step 0) Prepare diameter 4 andΓ2 generally? (Prudent)

• (Step 1) Characterize triangles occurring in amalgamationclasses

• (Step 2) Show that if the triangle constraints are as expected, thenΓi has the
expected constraints.

• (Step 3) Assuming the first two conditions, characterizeΓ.

(Works in diameter 3)

. . . With Lachlan’s Ramsey method in reserve.

Furthermore
No need to wait for a classification:

• Ramsey theory for these homogeneous metric spaces

• Topological dynamics

• Other aspects of the automorphism group (normal subgroups,subgroups of small
index)
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