1 Metrically Homogeneous Graphs

The Classification Problem

 Γ connected, with graph metric d.

 Γ is *metrically homogeneous* if the metric space (Γ, d) is (ultra)homogeneous.

(Cameron 1998) Classify the countable metrically homogeneous graphs.

Contexts: infinite distance transitive graphs, homogeneous graphs, homogeneous metric spaces

1.1 Finite Distance Transitive Graphs

Finite Distance Transitive Graphs

distance transitivity = metric homogeneity for pairs

Smith's Theorem:

• Imprimitive case: Bipartite or Antipodal (or a cycle)

Antipodal: maximal distance δ

• Reduction to the primitive case (halving, folding)

1.2 Homogeneous Graphs

Classification of Homogeneous Graphs

Metrically homogeneous diameter $\leq 2 =$ Homogeneous. (The metric *is* the graph)

Fraïssé Constructions: Henson graphs H_n , H_n^c Lachlan-Woodrow 1980 The homogeneous graphs are

- $m \cdot K_n$ and its complement;
- The pentagon and the line graph of $K_{3,3}$ (3 × 3 grid)
- The Henson graphs and their complements (including the Rado graph)

Method: Induction on Amalgamation Classes Claim: If A is an amalgamation class of finite graphs containing all graphs of order

3, I_{∞} , and K_n , then \mathcal{A} contains every K_{n+1} -free graph.

Proof by induction on the order |A| where A is K_{n+1} -free

This doesn't work directly, but a stronger statement can be proved by induction.

Induction via Amalgamation

 \mathcal{A}' is the set of finite graphs G such that any 1-point extension of G lies in \mathcal{A} . Inductive claim: Every finite graph belongs to \mathcal{A}' .

Not making much progress yet, but ...

1-complete: complete: co-complete.

 \mathcal{A}^p is the set of finite graphs G such that any finite p-complete graph extension of G belongs to \mathcal{A} .

 $\mathcal{A}^p \subseteq \mathcal{A}'$ \mathcal{A}^p is an amalgamation class

Target: The generators of \mathcal{A} all lie in one \mathcal{A}^p , for some p.

Lachlan's Ramsey Argument

How to get into \mathcal{A}^p :

1-point extensions of a large direct sum $\oplus A_i$ \implies p-extensions of one of the A_i .

If A_i is itself a direct sum of generators, we get a fixed value of p.

First used for tournaments: Lachlan 1984, cf. Cherlin 1988

1.3 Homogeneous Metric Spaces

Homogeneous Metric Spaces

Rational-valued Urysohn space. \mathbb{Z} -valued Urysohn space is a metrically homogeneous space. Or $\mathbb{Z} \cap [0, \delta]$ -valued. S-valued: Van Thé AMS Memoir 2010

A metrically homogeneous graph of diameter δ is:

A \mathbb{Z} -valued homogeneous metric space with bound δ , and all triangles (1, i, i + 1) allowed (connectivity).

2 A Catalog

2.1 Special Cases

Special Cases

- Diameter ≤ 2 (Lachlan/Woodrow 1980)
- Locally finite (Cameron, Macpherson)
- Γ₁-exceptional
- Imprimitive (Smith's Theorem)

The Locally Finite Case

Finite of diameter at least 3 and vertex degree at least 3: Antipodal double covers of certain finite homogeneous graphs (Cameron 1980)

Infinite, Locally Finite: Tree-like $T_{r,s}$ (Macpherson 1982) Construction:

Figure 1: Antipodal Double cover of C_5

The graphs $T_{r,s}$

The trees T(r, s): Alternately *r*-branching and *s*-branching. Bipartite, metrically homogeneous if the two halves of the partition are kept fixed.

The graph obtained by "halving" on the *r*-branching side is $T_{r,s}$. Each vertex lies at the center of a bouquet of *r s*-cliques.

Another point of view: the graph on the neighbors of a fixed vertex: $\Gamma_1: r \cdot K_{s-1}$.

From this point of view, we may also take r or s to be infinite!

Γ_1

 $\Gamma_i = \Gamma_i(v)$: Distance *i*, with the induced metric.

Remark 1. If distance 1 occurs, then the connected components of Γ_i are metrically homogeneous.

In particular Γ_1 is a homogeneous graph.

Exceptional Cases: finite, imprimitive, or H_n^c .

The finite case is Cameron+Macpherson, the imprimitive case leads back to $T_{r,s}$ with r or s infinite, and H_n^c does not occur for n > 2 (Cherlin 2011)

In other words, the nonexceptional cases are

*I*_∞

• Henson graphs H_n including Rado's graph.

Imprimitive Graphs

"Smith's Theorem" (Amato/Macpherson, Cherlin):

Part I: Bipartite or antipodal, and in the antipodal case with classes of order 2 and the metric antipodal law for the pairing:

$$d(x, y') = \delta - d(x, y)$$

Hence no triangles of diameter greater than 2δ :

 $d(x, z) \le d(x, y') + d(y', z) = 2\delta - d(x, y) - d(x, z)$

Part II: The bipartite case reduces by halving to a case in which Γ_1 is the Rado graph.

On the other hand, *the antipodal case does not reduce:* while distance transitivity is inherited after "folding," metric homogeneity is not.

There is also a bipartite antipodal case.

2.2 Generic Cases

Some Amalgamation Classes

Within \mathcal{A}^{δ} : finite integral metric spaces with bound δ :

- $\mathcal{A}_{K,\text{even}}^{\delta}$: No odd cycles below 2K + 1.
- \mathcal{A}_{C}^{δ} bounded: Perimeter at most C.
- $(1, \delta)$ -constraints.

The first two classes are given (implicitly) in Komjath/Mekler/Pach 1988 as examples of constraints admitting a universal graph, which is constructed by amalgamation.

The last is a generalization of Henson's construction. A $(1, \delta)$ -space is a space in which only the distances 1 and δ occur (a vacuous condition if $\delta = 2$).

Any set S of $(1, \delta)$ -constraints may be imposed.

Mixing: $\mathcal{A}^{\delta}_{K,C;S}$

Expectations ca. 2008

- The generic case is $\mathcal{A}_{\Delta,S}^{\delta}$ with Δ some set of forbidden triangles ...
- and Δ is a mix of parity constraints K and size constraints C.

Not quite ...

Variations on a theme

More examples

- $C = (C_0, C_1)$: C_0 controls large even parity, C_1 controls large odd parity
- $K = (K_1, K_2)$: K_1 controls odd cycles at the bottom, K_2 controls odd cycles midrange.
 - -(i, j, k): P = i + j + k
 - For P odd, forbid

$$P < 2K_1 + 1 \tag{1}$$

$$P > 2K_2 + i \tag{2}$$

Triangle Constraints

Theorem 1. If A is a geodesic amalgamation class of finite integral metric spaces with diameter δ , determined by triangles, then A is one of the classes

$$\mathcal{A}^{o}_{K,C;\mathcal{S}}$$

with $K = (K_1, K_2)$ and $C = (C_0, C_1)$.

But not all such classes work

Definability in Presburger Arithmetic

The classes $\mathcal{A}_{K,C}^{\delta}$ are uniformly definable in Presburger arithmetic from the parameters $K_1, K_2, C_0, C_1, \delta$.

The k-amalgamation property is amalgamation for diagrams of order at most k.

With constraints of order 3, one expects k-amalgamation for some low k to imply amalgamation. (In the event, k = 5.)

Observation 1. *k*-amalgamation is a definable property in Presburger arithmetic for the classes $\mathcal{A}_{K,C}^{\delta}$.

Therefore it should be expressible using inequalities and congruence conditions on linear combinations of the parameters.

Acceptable Parameters

- $\delta \geq 3$.
- $1 \le K_1 \le K_2 \le \delta$ or $K_1 = \infty$ and $K_2 = 0$;
- $2\delta + 1 \le C_{\min} < C_{\max} \le 3\delta + 2$, with one even and one odd.

Conditions for amalgamation (or 5-amalgamation):

Conditions on K, C

• If $K_1 = \infty$:

$$K_2 = 0, C_1 = 2\delta + 1,$$

• If $K_1 < \infty$ and $C \le 2\delta + K_1$:

$$C = 2K_1 + 2K_2 + 1, K_1 + K_2 \ge \delta$$
, and $K_1 + 2K_2 \le 2\delta - 1$
If $C' > C + 1$ then $K_1 = K_2$ and $3K_2 = 2\delta - 1$.

• If $K_1 < \infty$, and $C > 2\delta + K_1$:

$$\begin{split} K_1 + 2K_2 &\geq 2\delta - 1 \text{ and } 3K_2 \geq 2\delta.\\ \text{If } K_1 + 2K_2 &= 2\delta - 1 \text{ then } C \geq 2\delta + K_1 + 2.\\ \text{If } C' &> C + 1 \text{ then } C \geq 2\delta + K_2. \end{split}$$

Notes: $C = \min(C_0, C_1), C' = \max(C_0, C_1)$ C' > C + 1 means we need both C_0 and C_1 .

Conditions on ${\cal S}$

• If
$$K_1 = \infty$$
:

$$\mathcal{S} \text{ is } \begin{cases} \text{empty} & \text{if } \delta \text{ is odd, or } C_0 \leq 3\delta \\ \text{a set of } \delta \text{-cliques} & \text{if } \delta \text{ is even, } C_0 = 3\delta + 2 \end{cases}$$

• If
$$K_1 < \infty$$
 and $C \le 2\delta + K_1$:

If
$$K_1 = 1$$
 then S is empty.

• If $K_1 < \infty$, and $C > 2\delta + K_1$:

If $K_2 = \delta$ then S cannot contain a triangle of type $(1, \delta, \delta)$. If $K_1 = \delta$ then S is empty. If $C = 2\delta + 2$, then S is empty.

2.3 Proofs

Antipodal Variations

- $\mathcal{A}_{a}^{\delta} = \mathcal{A}_{1,\delta-1;2\delta+2,2\delta+1;\emptyset}^{\delta}$ is the set of finite integral metric spaces in which no triangle has perimeter greater than 2δ .
- $\mathcal{A}_{a,n}^{\delta}$ is the subset of \mathcal{A}_{a}^{δ} containing no subspace of the form $I_{2}^{\delta-1}[K_{k}, K_{\ell}]$ with $k+\ell=n$; here $I_{2}^{\delta-1}$ denotes a pair of vertices at distance $\delta-1$ and $I_{2}^{\delta-1}[K_{k}, K_{\ell}]$ stands for the corresponding composition, namely a graph of the form $K_{k} \cup K_{\ell}$ with K_{k}, K_{ℓ} cliques (at distance 1), and $d(x, y) = \delta 1$ for $x \in K_{k}, y \in K_{\ell}$. In particular, with $k = n, \ell = 0$, this means K_{n} does not occur.

Necessity: Amalgamation diagrams

Lemma 2. Let A be an amalgamation class of diameter δ determined by triangle constraints with associated parameters K_1, K_2, C, C' . Then

$$C > \min(2\delta + K_1, 2K_1 + 2K_2)$$

We suppose

$$C \le 2\delta + K_1$$

and we show that

$$C > 2K_1 + 2K_2$$

Set
$$j = \lfloor \frac{C-K_1}{2} \rfloor$$
, and $i = (C - K_1) - j$. Then $1 < j \le i \le \delta$.

 $C > \min(2\delta + K_1, 2K_1 + 2K_2)$

In the following amalgamation, vertices u_1, u_2 force $d(a_1, a_2) = K_1$ and $|a_1 a_2 c| = C$:

So omit ca_2u_1 or ca_2u_2 , with $P \ge 2K_1 + 1, \ldots$

Proofs of amalgamation

Three amalgamation strategies:

- $d^{-}(a,b) = \max(d(a,x) d(a,b))$
- $d^+(a,b) = \inf d(a,x) + d(x,b)$
- $\tilde{d}(a,b) = \inf[C (d(a,x) + d(a,b))]$

Amalgamation for $\mathcal{A}_{K,C}^{\delta}$

- If $C \le 2\delta + K_1$: - If $d^-(a_1, a_2) \ge K_1$ then take $d(a_1, a_2) = d^-(a_1, a_2)$. Otherwise: - If C' = C + 1 then: * If $d^+(a_1, a_2) \le K_2$ then take $d(a_1, a_2) = \min(d^+(a_1, a_2), \tilde{d}(a_1, a_2))$ * If $d^-(a_1, a_2) \le K_1$ and $K_2 < d^+(a_1, a_2)$ then take $d(a_1, a_2) = \tilde{d}(a_1, a_2)$ if $\tilde{d}(a_1, a_2) \le K_2$ and $d(a_1, a_2) = K_1$ otherwise. - if C' > C + 1 then: * If $d^+(a_1, a_2) < K_2$ then take $d(a_1, a_2) = d^+(a_1, a_2)$; * If $d^-(a_1, a_2) < K_2 \le d^+(a_1, a_2)$ then take $d(a_1, a_2) = \begin{cases} K_2 - 1 & \text{if there is } v \in A_0 \text{ with } d(a_1, v) = d(a_2, v) = \delta \\ K_2 & \text{otherwise} \end{cases}$ • If $C > 2\delta + K_1$: • If $C > 2\delta + K_1$:
 - If $d^{-}(a_1, a_2) > K_1$ then take $d(a_1, a_2) = d^{-}(a_1, a_2)$; Otherwise:
 - If C' = C + 1 then:
 - * If $d^+(a_1, a_2) \le K_1$ then take $d(a_1, a_2) = \min(d^+(a_1, a_2), \tilde{d}(a_1, a_2));$ * If $d^+(a_1, a_2) > K_1$ then take

$$d(a_1,a_2) = \begin{cases} K_1+1 & \text{if there is } v \in A_0 \text{ with} \\ & d(a_1,v) = d(a_2,v) = \delta, \\ & \text{and } K_1+2K_2 = 2\delta-1 \\ K_1 & \text{otherwise} \end{cases}$$

- If C' > C + 1 then:
 - * If $d^+(a_1, a_2) < K_2$ then take $d(a_1, a_2) = d^+(a_1, a_2)$; * If $d^+(a_1, a_2) \ge K_2$ then take $d(a_1, a_2) = \min(K_2, C - 2\delta - 1)$.

3 Conclusion

Completeness?

Good points:

• All cases with exceptional Γ_1

- $\delta \leq 3$, probably (Amato/Cherlin/Macpherson)
- Exact as far as triangle constraints are concerned
- Smith's Theorem

Weak points

- Smith's Theorem
 - Bipartite to be completed inductively
 - Antipodal description may be incomplete
- Induction to Γ_i is not always available

In fact, for antipodal graphs omitting K_n , triangles and $(1, \delta)$ -constraints do not suffice.

That class was found on an ad hoc basis. (And is invisible in diameter 3.)

Toward a classification theorem

Strategy?

- (Step 0) Prepare diameter 4 and Γ_2 generally? (Prudent)
- (Step 1) Characterize triangles occurring in amalgamation classes
- (Step 2) Show that if the triangle constraints are as expected, then Γ_i has the expected constraints.
- (Step 3) Assuming the first two conditions, characterize Γ .

(Works in diameter 3)

... With Lachlan's Ramsey method in reserve.

Furthermore

No need to wait for a classification:

- Ramsey theory for these homogeneous metric spaces
- Topological dynamics
- Other aspects of the automorphism group (normal subgroups, subgroups of small index)