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Homogeneity

A ' B =⇒ A ∼ B under Aut(Γ)

E.g. (Q, <)

Urysohn 1927 (Ph.D. 1921; d. 1924, aged 26): U
Rado 1964: G

Fraı̈ssé 1954: Γ↔ Sub(Γ)
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Fraı̈ssé 1954: Γ↔ Sub(Γ)
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U

Amalgamation of Metric Spaces

1-point extensions: Ai = A0 ∪ {ui}.
d+(u1, u2) = min(d(u1, a) + d(u2, a))
d−(u1, u2) = max |d(u1, a)− d(u2, a)|
Any positive d in [d+, d−] will do.

U0: The universal homogeneous countable rational-valued
metric space.
U: The completion of U0.
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Homogeneous Graphs and Digraphs

Henson 1971: Gn (Kn-free graph), its automorphisms and
structure
Henson 1972: D¬T (T -free digraph)

Lachlan-Woodrow 1980: Homogeneous graphs classified.
Imprimitive or Degenerate: (mKn)±; Primitive finite: P,
E(K3,3)
Primitive infinite: (Gn)±

Lachlan 1984: Homogeneous tournaments classified
I1,C3,Q,S, T∞
Cherlin 1993 (Banff): Homogeneous directed graphs

Tools: Fraı̈ssé, Finite Ramsey theorem
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Some recent developments

Torrezão de Souza/Truss 2008: Colored PO

Color classes c1 ≤ c2 ≤ c1, densely colored; connections
between pairs of color class components; triples. Fraı̈ssé for
existence.

Kechris-Pestov-Todorcevic 2005:
Fraı̈ssé+Ramsey+Top. Dynamics
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Some recent developments

Torrezão de Souza/Truss 2008: Colored PO

Kechris-Pestov-Todorcevic 2005:
Fraı̈ssé+Ramsey+Top. Dynamics

Glasner: “This remarkable paper is a tour de force where
three experts in disparate areas—model theory, structural
Ramsey theory and topological dynamics—collaborate in
creating a unified and beautiful theory.”
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Some recent developments

Kechris-Pestov-Todorcevic 2005:
Fraı̈ssé+Ramsey+Top. Dynamics

Minimal flows: compact actions with every orbit dense.
Extremely amenable: no nontrivial minimal flow



Around Homo-
geneous
Universal
Graphs

Gregory
Cherlin

I. Homoge-
neous
Structures

Recent
Developments

Universality

Applications

Questions

Some recent developments

Kechris-Pestov-Todorcevic 2005:
Fraı̈ssé+Ramsey+Top. Dynamics

• The extremely amenable closed subgroups of Sym∞ are
exactly the groups of the form Aut(A) with A the Fraı̈ssé
limit of a Fraı̈ssé order class with the Ramsey property.
• If A is one of the following structures, then the universal
minimal flow M(G) of the group G = Aut(A) is its action on
the space of linear orderings of the universe of A0:

Gn (n ≤ ∞);
(N,=);
U0
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Distance homogeneous graphs?

Cameron: classify connected graphs which are
homogeneous as metric spaces in the graph metric.

δ ≤ 2: Lachlan-Woodrow

Γ1 = Γ(v∗): Homogeneous graph
A catalog?
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A catalog

1 δ ≤ 2 (L-W);

2 Locally finite and limits of such
1 Cn (n ≤ ∞)
2 “Doubles”
3 Tree-like (r -tree of s-cliques: r , s ≤ ∞)

3 Fraı̈ssé type
δ ≤ d ;
Omit (1,d)-subspaces (d ≥ 3);
Omit odd cycles up to order 2K + 1;
Omit triangles of perimeter ≥ C.
Some interactions in these constraints.
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Γ1

Exceptional Γ1 → Exceptional Γ.

Difficulty: Γk

Homogeneous metric space; not necessarily with the graph
metric, because of the parity condition.

But (Γk−1, Γk ) should be.
Extend the classification project?
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Universal Graphs

Komjáth-Mekler-Pach 1988: Universal graphs omitting
paths; or omitting cycles of odd length

Data: Finitely many constraints C (finite, connected
“forbidden” graphs).
Universal countable C-free graph? ? Decidable ?
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Universality and ℵ0-categoricity

Existentially complete C-free graphs.
(Generalizes Fraı̈ssé.)

If the existentially complete countable graph is unique, then
it is universal.
And there is an exact criterion for this in terms of the
algebraic closure.
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Algebraic Closure

Forbid C. What is aclC(A)?

• Forbid C4. Then for points u, v at distance 2, the
“midpoint” is a definable function f (u, v). Such points are in
the “definable closure” of u, v .

• Forbid a star Sk . Then for any u, the neighbors of u are
“algebraic” over u: they lie in a u-definable finite set.



Around Homo-
geneous
Universal
Graphs

Gregory
Cherlin

I. Homoge-
neous
Structures

Recent
Developments

Universality

Applications

Questions

Algebraic Closure

Forbid C. What is aclC(A)?

• Forbid C4. Then for points u, v at distance 2, the
“midpoint” is a definable function f (u, v). Such points are in
the “definable closure” of u, v .

• Forbid a star Sk . Then for any u, the neighbors of u are
“algebraic” over u: they lie in a u-definable finite set.



Around Homo-
geneous
Universal
Graphs

Gregory
Cherlin

I. Homoge-
neous
Structures

Recent
Developments

Universality

Applications

Questions

Algebraic Closure

Forbid C. What is aclC(A)?

• Forbid C4. Then for points u, v at distance 2, the
“midpoint” is a definable function f (u, v). Such points are in
the “definable closure” of u, v .

• Forbid a star Sk . Then for any u, the neighbors of u are
“algebraic” over u: they lie in a u-definable finite set.



Around Homo-
geneous
Universal
Graphs

Gregory
Cherlin

I. Homoge-
neous
Structures

Recent
Developments

Universality

Applications

Questions

ℵ0-categoricity and algebraic closure

Theorem (CSS 1999)
Let C be a finite set of forbidden graphs, T the theory of the
existentially complete C-free graphs. Then the following are
equivalent.

1 T has a unique countable model
2 The algebraic closure operator is locally finite.

Proof.
=⇒ : General nonsense (Ryll-Nardzewski, Engeler,
Svenonius)
⇐= : Close analysis: over any finite algebraically closed
set, the set of types is finite.



Around Homo-
geneous
Universal
Graphs

Gregory
Cherlin

I. Homoge-
neous
Structures

Recent
Developments

Universality

Applications

Questions

ℵ0-categoricity and algebraic closure

Theorem (CSS 1999)
Let C be a finite set of forbidden graphs, T the theory of the
existentially complete C-free graphs. Then the following are
equivalent.

1 T has a unique countable model
2 The algebraic closure operator is locally finite.

Proof.
=⇒ : General nonsense (Ryll-Nardzewski, Engeler,
Svenonius)
⇐= : Close analysis: over any finite algebraically closed
set, the set of types is finite.



Around Homo-
geneous
Universal
Graphs

Gregory
Cherlin

I. Homoge-
neous
Structures

Recent
Developments

Universality

Applications

Questions

1 I. Homogeneous Structures

2 Recent Developments

3 Universality

4 Applications

5 Questions



Around Homo-
geneous
Universal
Graphs

Gregory
Cherlin

I. Homoge-
neous
Structures

Recent
Developments

Universality

Applications

Questions

Applications: Cycles . . .

Conjectured by Menachem Kojman:

Theorem
If C is closed under homomorphism (i.e., the image of a
constraint in C under graph homomorphism is C-forbidden)
then acl is degenerate and there is a universal C-free graph.

Example. Odd cycles.
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Applications: Cycles . . .

Conjectured by Menachem Kojman:

Theorem
If C is closed under homomorphism (i.e., the image of a
constraint in C under graph homomorphism is C-forbidden)
then acl is degenerate and there is a universal C-free graph.

Example. Odd cycles.

Theorem (Cherlin-Shi 1996)
For C a finite set of cycles the following are equivalent.

1 There is a universal C-free graph.
2 C consists of all odd cycles up to a fixed length.
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. . . and trees

Theorem (Cherlin-Shelah 2007)

For C = {T} a single tree, the following are equivalent.
1 There is a universal C-free graph.
2 The tree T is an extension of a path by at most one

additional edge.

(⇐= : Cherlin-Tallgren 2007, based on KMP)
=⇒ :

Shelah’s idea: Pruning

To prune a tree T : T ′ is obtained by removing all leaves.
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Pruning Trees

Lemma
If there is a T -free universal graph G then there is a
T ′-universal graph G∗, consisting of the vertices of G of
infinite degree.

Minimal trees: those which prune to a path or near-path.

(15 cases).
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General Pruning

In general: Remove a minimal block-leaf. (Or a
downward-closed family.)

Conjectures

Conjecture
If there is C-free universal graph, then C has complete
blocks and a path-like structure, with very few exceptions.

Conjecture
For a single connected constraint C, the problem of
determining whether there is a universal C-free graph is
algorithmically decidable.
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Two Questions

• Is the generic triangle-free graph G3 pseudofinite (i.e., are
its properties shared by finite graphs)?

“Alice’s Restaurant” extension properties

Vershik: there is a random construction of G3.
Namely, build a graph on R for which the extension
properties are satisfied on open sets, and take a countable
subgraph at random, with respect to a probability measure
on R.

• The Hairy Ball Problem Let K be a finite graph consisting
of a complete graph together with a single finite path
attached to each vertex. Is there a universal K -free graph?
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subgraph at random, with respect to a probability measure
on R.

• The Hairy Ball Problem Let K be a finite graph consisting
of a complete graph together with a single finite path
attached to each vertex. Is there a universal K -free graph?
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A Concrete Example

The Bouquet K5 ∧ K5

(Algebraic closure running along the mid-line)
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