Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions

Around Homogeneous Universal Graphs

Gregory Cherlin

Dec. 13, 2008 Calgary

Contents

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions

I Homogeneous Structures

- Distance Homogeneous Graphs
- II Universal Graphs
- Trees

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Development Universality Applications 1. Homogeneous Structures

Recent Developments

Universality

Applications

5 Questions

Homogeneity

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments Universality Applications

$A \simeq B \implies A \sim B$ under Aut(Γ)

E.g. ($\mathbb{Q}, <$)

Homogeneity

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments Universality Applications Questions

```
A \simeq B \implies A \sim B under Aut(\Gamma)
E.g. (\mathbb{Q}, <)
```

```
Urysohn 1927 (Ph.D. 1921; d. 1924, aged 26): \mathbb U Rado 1964: G
```

```
Fraïssé 1954: \Gamma \leftrightarrow \operatorname{Sub}(\Gamma)
```

Amalgamation

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments Universality Applications

Questions

Fraïssé 1954: $\Gamma \leftrightarrow \operatorname{Sub}(\Gamma)$

Amalgamation

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments Universality Applications

Questions

Fraïssé 1954: $\Gamma \leftrightarrow \text{Sub}(\Gamma)$

\mathbb{U}

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments Universality Applications Questions

Amalgamation of Metric Spaces

$$\begin{split} & \text{1-point extensions: } A_i = A_0 \cup \{u_i\}. \\ & d^+(u_1, u_2) = \text{min}(d(u_1, a) + d(u_2, a)) \\ & d^-(u_1, u_2) = \text{max} \left| d(u_1, a) - d(u_2, a) \right| \\ & \text{Any positive } d \text{ in } [d^+, d^-] \text{ will do.} \end{split}$$

\mathbb{U}

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments Universality Applications Questions

Amalgamation of Metric Spaces

1-point extensions: $A_i = A_0 \cup \{u_i\}$. $d^+(u_1, u_2) = \min(d(u_1, a) + d(u_2, a))$ $d^-(u_1, u_2) = \max |d(u_1, a) - d(u_2, a)|$ Any positive *d* in $[d^+, d^-]$ will do.

 \mathbb{U}_0 : The universal homogeneous countable rational-valued metric space.

 \mathbb{U} : The completion of \mathbb{U}_0 .

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments Universality Applications

Questions

Henson 1971: G_n (K_n -free graph), its automorphisms and structure Henson 1972: $D_{\neg T}$ (T-free digraph)

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments Universality Applications Questions Henson 1971: G_n (K_n -free graph), its automorphisms and structure Henson 1972: $D_{\neg T}$ (T-free digraph)

Lachlan-Woodrow 1980: Homogeneous graphs classified. Imprimitive or Degenerate: $(mK_n)^{\pm}$; Primitive finite: P, $E(K_{3,3})$ Primitive infinite: $(G_n)^{\pm}$

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments Universality Applications Questions Henson 1971: G_n (K_n -free graph), its automorphisms and structure Henson 1972: $D_{\neg T}$ (T-free digraph)

Lachlan-Woodrow 1980: Homogeneous graphs classified. Imprimitive or Degenerate: $(mK_n)^{\pm}$; Primitive finite: P, $E(K_{3,3})$ Primitive infinite: $(G_n)^{\pm}$ Lachlan 1984: Homogeneous tournaments classified $I_1, C_3, \mathbb{Q}, \mathbb{S}, \mathcal{T}_{\infty}$ Cherlin 1993 (Banff): Homogeneous directed graphs

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments Universality Applications Questions Henson 1971: G_n (K_n -free graph), its automorphisms and structure Henson 1972: $D_{\neg T}$ (T-free digraph)

Lachlan-Woodrow 1980: Homogeneous graphs classified. Imprimitive or Degenerate: $(mK_n)^{\pm}$; Primitive finite: P, $E(K_{3,3})$ Primitive infinite: $(G_n)^{\pm}$ Lachlan 1984: Homogeneous tournaments classified $I_1, C_3, \mathbb{Q}, \mathbb{S}, \mathcal{T}_{\infty}$ Cherlin 1993 (Banff): Homogeneous directed graphs

Tools: Fraïssé, Finite Ramsey theorem

Around Homogeneous Universal Graphs

> Gregory Cherlin

> > 2

I. Homogeneous Structures

Recent Developments

Universality Applications I. Homogeneous Structures

Recent Developments

Universality

Applications

5 Questions

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions

Torrezão de Souza/Truss 2008: Colored PO

Color classes $c_1 \le c_2 \le c_1$, densely colored; connections between pairs of color class components; triples. Fraïssé for existence.

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications

Questions

Torrezão de Souza/Truss 2008: Colored PO

Kechris-Pestov-Todorcevic 2005: Fraïssé+Ramsey+Top. Dynamics

Glasner: "This remarkable paper is a tour de force where three experts in disparate areas—model theory, structural Ramsey theory and topological dynamics—collaborate in creating a unified and beautiful theory."

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions

Kechris-Pestov-Todorcevic 2005: Fraïssé+Ramsey+Top. Dynamics

Minimal flows: compact actions with every orbit dense. Extremely amenable: no nontrivial minimal flow

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications Kechris-Pestov-Todorcevic 2005: Fraïssé+Ramsey+Top. Dynamics

• The extremely amenable closed subgroups of Sym_{∞} are exactly the groups of the form $Aut(\mathbb{A})$ with \mathbb{A} the Fraïssé limit of a Fraïssé order class with the Ramsey property.

• If \mathbb{A} is one of the following structures, then the universal minimal flow M(G) of the group $G = Aut(\mathbb{A})$ is its action on the space of linear orderings of the universe of \mathbb{A}_0 :

•
$$G_n (n \leq \infty);$$

• U₀

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications

Questions

Cameron: classify connected graphs which are homogeneous as metric spaces in the graph metric.

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Cameron: classify connected graphs which are homogeneous as metric spaces in the graph metric.

 $\delta \leq$ 2: Lachlan-Woodrow

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Application

Questions

Cameron: classify connected graphs which are homogeneous as metric spaces in the graph metric.

 $\delta \leq$ 2: Lachlan-Woodrow

 $\Gamma_1 = \Gamma(v_*)$: Homogeneous graph

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions

Cameron: classify connected graphs which are homogeneous as metric spaces in the graph metric.

 $\delta \leq$ 2: Lachlan-Woodrow

 $\Gamma_1 = \Gamma(v_*)$: Homogeneous graph A catalog?

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications

Questions

• $\delta \leq 2$ (L-W);

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications

Questions

• $\delta \leq 2$ (L-W);

2 Locally finite and limits of such

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions

• $\delta \leq 2$ (L-W);

2 Locally finite and limits of such

- $C_n (n \leq \infty)$
- ② "Doubles"

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications

Questions

δ ≤ 2 (L-W);

Locally finite and limits of such

•
$$C_n (n \le \infty)$$

② "Doubles"

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications • $\delta \leq 2$ (L-W);

Locally finite and limits of such

•
$$C_n (n \le \infty)$$

② "Doubles"

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions

- $\delta \leq 2$ (L-W);
- 2 Locally finite and limits of such
 - $C_n (n \le \infty)$
 - ② "Doubles"
 - **③** Tree-like (*r*-tree of *s*-cliques: $r, s \leq \infty$)

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

- Universality
- Applications
- Questions

- $\delta \leq 2$ (L-W);
- 2 Locally finite and limits of such
 - $C_n (n \le \infty)$
 - ② "Doubles"
 - 3 Tree-like (*r*-tree of *s*-cliques: $r, s \leq \infty$)
- Fraïssé type
 - $\delta \leq d$;
 - Omit (1, *d*)-subspaces (*d* ≥ 3);
 - Omit odd cycles up to order 2K + 1;
 - Omit triangles of perimeter $\geq C$. Some interactions in these constraints.

Γ_1

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications

Questions

Exceptional $\Gamma_1 \to \text{Exceptional} \ \Gamma.$

${\boldsymbol{\Gamma}}_1$

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications

Questions

Exceptional $\Gamma_1 \rightarrow$ Exceptional Γ . Difficulty: Γ_k

${\boldsymbol{\Gamma}}_1$

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions

Exceptional $\Gamma_1 \to \text{Exceptional}\ \Gamma.$

Difficulty: Γ_k

Homogeneous metric space; not necessarily with the graph metric, because of the parity condition.

${\boldsymbol{\Gamma}}_1$

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Questions

```
Exceptional \Gamma_1 \rightarrow Exceptional \Gamma.
```

Difficulty: Γ_k

Homogeneous metric space; not necessarily with the graph metric, because of the parity condition.

But (Γ_{k-1}, Γ_k) should be. Extend the classification project? Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications

I. Homogeneous Structures

Recent Developments

Oliversality

Applications

5 Questions

Universal Graphs

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications

Questions

Komjáth-Mekler-Pach 1988: Universal graphs omitting paths; or omitting cycles of odd length

Universal Graphs

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications Komjáth-Mekler-Pach 1988: Universal graphs omitting paths; or omitting cycles of odd length

Data: Finitely many constraints C (finite, connected "forbidden" graphs).

Universal countable C-free graph? ? Decidable ?

Universality and ℵ₀-categoricity

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications

Questions

Existentially complete *C*-free graphs. (Generalizes Fraïssé.)

Universality and ℵ₀-categoricity

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications Existentially complete *C*-free graphs. (Generalizes Fraïssé.)

If the existentially complete countable graph is unique, then it is universal. And there is an exact criterion for this in terms of the

algebraic closure.

Algebraic Closure

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications

Questions

Forbid C. What is $acl_{\mathcal{C}}(A)$?

Algebraic Closure

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications

Questions

Forbid C. What is $acl_{\mathcal{C}}(A)$?

• Forbid C_4 . Then for points u, v at distance 2, the "midpoint" is a definable function f(u, v). Such points are in the "definable closure" of u, v.

Algebraic Closure

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications

Forbid C. What is $acl_{\mathcal{C}}(A)$?

- Forbid C_4 . Then for points u, v at distance 2, the "midpoint" is a definable function f(u, v). Such points are in the "definable closure" of u, v.
- Forbid a star S_k . Then for any u, the neighbors of u are "algebraic" over u: they lie in a u-definable finite set.

\aleph_0 -categoricity and algebraic closure

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications

Theorem (CSS 1999)

Let C be a finite set of forbidden graphs, T the theory of the existentially complete C-free graphs. Then the following are equivalent.

- T has a unique countable model
 - The algebraic closure operator is locally finite.

\aleph_0 -categoricity and algebraic closure

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality Applications

Questions

Theorem (CSS 1999)

Let C be a finite set of forbidden graphs, T the theory of the existentially complete C-free graphs. Then the following are equivalent.

T has a unique countable model

Interaction of the second state of the seco

Proof.

 \implies : General nonsense (Ryll-Nardzewski, Engeler, Svenonius)

 \Leftarrow : Close analysis: over any finite algebraically closed set, the set of types is finite.

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Development

Universality

Applications

Questions

I. Homogeneous Structures

Recent Developments

Universality

Applications

5 Questions

Applications: Cycles ...

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions

Conjectured by Menachem Kojman:

Theorem

If C is closed under homomorphism (i.e., the image of a constraint in C under graph homomorphism is C-forbidden) then acl is degenerate and there is a universal C-free graph.

Example. Odd cycles.

Applications: Cycles ...

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions

Conjectured by Menachem Kojman:

Theorem

If C is closed under homomorphism (i.e., the image of a constraint in C under graph homomorphism is C-forbidden) then acl is degenerate and there is a universal C-free graph.

Example. Odd cycles.

Theorem (Cherlin-Shi 1996)

For C a finite set of cycles the following are equivalent.

- There is a universal *C*-free graph.
- C consists of all odd cycles up to a fixed length.

... and trees

Around Homogeneous Universal Graphs

Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions

Theorem (Cherlin-Shelah 2007)

For $C = \{T\}$ a single tree, the following are equivalent.

- There is a universal *C*-free graph.
- The tree T is an extension of a path by at most one additional edge.

... and trees

Around Homogeneous Universal Graphs

Gregory Cherlin

I. Homogeneous Structures

Recent Development

Universality

Applications

Questions

Theorem (Cherlin-Shelah 2007)

For $C = \{T\}$ a single tree, the following are equivalent.

There is a universal C-free graph.

The tree T is an extension of a path by at most one additional edge.

(<= : Cherlin-Tallgren 2007, based on KMP)

... and trees

 \implies :

Around Homogeneous Universal Graphs

Gregory Cherlin

I. Homogeneous Structures

Recent Development

Universality

Applications

Questions

Theorem (Cherlin-Shelah 2007)

For $C = \{T\}$ a single tree, the following are equivalent.

The tree T is an extension of a path by at most one additional edge.

(<= : Cherlin-Tallgren 2007, based on KMP)

Shelah's idea: Pruning

To prune a tree T: T' is obtained by removing all leaves.

Pruning Trees

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Development

Universality

Applications

Questions

Lemma

If there is a T-free universal graph G then there is a T'-universal graph G^* , consisting of the vertices of G of infinite degree.

Pruning Trees

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Development

Universality

Applications

Questions

Lemma

If there is a T-free universal graph G then there is a T'-universal graph G^* , consisting of the vertices of G of infinite degree.

Minimal trees: those which prune to a path or near-path. (15 cases).

General Pruning

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions

In general: Remove a minimal block-leaf. (Or a downward-closed family.)

Conjectures

General Pruning

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions

In general: Remove a minimal block-leaf. (Or a downward-closed family.)

Conjectures

Conjecture

If there is C-free universal graph, then C has complete blocks and a path-like structure, with very few exceptions.

General Pruning

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions

In general: Remove a minimal block-leaf. (Or a downward-closed family.)

Conjectures

Conjecture

If there is C-free universal graph, then C has complete blocks and a path-like structure, with very few exceptions.

Conjecture

For a single connected constraint *C*, the problem of determining whether there is a universal *C*-free graph is algorithmically decidable.

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Development

Universality

Applications

Questions

I. Homogeneous Structures

Recent Developments

Universality

Applications

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions

• Is the generic triangle-free graph G_3 pseudofinite (i.e., are its properties shared by finite graphs)?

"Alice's Restaurant" extension properties

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments

Universality

Applications

Questions

• Is the generic triangle-free graph G_3 pseudofinite (i.e., are its properties shared by finite graphs)?

"Alice's Restaurant" extension properties

Vershik: there is a random construction of G_3 .

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments Universality Applications

Questions

• Is the generic triangle-free graph G_3 pseudofinite (i.e., are its properties shared by finite graphs)?

"Alice's Restaurant" extension properties

Vershik: there is a random construction of G_3 . Namely, build a graph on \mathbb{R} for which the extension properties are satisfied on open sets, and take a countable subgraph at random, with respect to a probability measure on \mathbb{R} .

Around Homogeneous Universal Graphs

> Gregory Cherlin

I. Homogeneous Structures

Recent Developments Universality Applications • Is the generic triangle-free graph G_3 pseudofinite (i.e., are its properties shared by finite graphs)?

"Alice's Restaurant" extension properties

Vershik: there is a random construction of G_3 . Namely, build a graph on \mathbb{R} for which the extension properties are satisfied on open sets, and take a countable subgraph at random, with respect to a probability measure on \mathbb{R} .

• The Hairy Ball Problem Let *K* be a finite graph consisting of a complete graph together with a single finite path attached to each vertex. Is there a universal *K*-free graph?

A Concrete Example

(Algebraic closure running along the mid-line)