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Dichotomies as algorithmic problems

QC : a finitely constrained class of finite structures.

E.g.: Graphs of vertex degree at most 3; triangle-free
graphs; Linear tournaments; permutations omitting certain
patterns.

Questions about QC :
• wqo? (no infinite antichain)
• universal countable object?

Algorithmic problem: is the answer computable from C?
(polynomial time?)

Thesis: these properties give dichotomies if the answer is
computable.
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WQO

Any infinite subsequence includes an ascending sequence.

Higman Theorem: finite strings from a wqo alphabet are
wqo.
Kruskal tree theorem: finite rooted trees are wqo under
inf-preserving embeddings;
EKT (Extended, Friedman)
Robertson-Seymour Graph minor theorem: Finite graphs
with the minor relation are wqo.

The theorem of Robertson and Seymour . . . was proved
using finitely many iterated applications of the “minimal bad
sequence” method from well-quasi-ordering theory. It is
shown [in FRS1987] that some such (impredicative)
methods must be used . . .
[Friedman, Robertson, Seymour 1987]
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Failures of WQO: Examples

Paths with colored vertices:

Tournaments: Permutations:

These are minimal antichains: Q<I is wqo

Lemma
Below any antichain there is a minimal antichain.

(Minimal bad sequence argument)

These antichains are also isolated: there is a finite set of
constraints C such these are the only antichains in QC , up to
equivalence. (I.e., up to Q<I = Q<J .)
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Isolated antichains

Density Hypothesis: The isolated minimal antichains are
dense (any non-wqo QC contains an isolated antichain).

Examples:
Graphs:

Just 2 minimal antichains
I0: Cycles (degree at most 2—unique isolated)

I1: Bridges: (not isolated)

Colored Paths

Corollary
In the cases of graphs and colored paths, the isolated
minimal antichains are dense, the associated ideals are
effectively recognizable, and the recognition of wqo classes
given by finitely many constraints is effective, in polynomial
time.



Structure/Nonstructure
for Classes of
Finite Models

Gregory
Cherlin

WQO/¬WQO

Universality /
Nonuniversal-
ity

Isolated antichains

Density Hypothesis: The isolated minimal antichains are
dense (any non-wqo QC contains an isolated antichain).
Examples:

Graphs:

Just 2 minimal antichains
I0: Cycles (degree at most 2—unique isolated)

I1: Bridges: (not isolated)

Colored Paths

Corollary
In the cases of graphs and colored paths, the isolated
minimal antichains are dense, the associated ideals are
effectively recognizable, and the recognition of wqo classes
given by finitely many constraints is effective, in polynomial
time.



Structure/Nonstructure
for Classes of
Finite Models

Gregory
Cherlin

WQO/¬WQO

Universality /
Nonuniversal-
ity

Isolated antichains

Density Hypothesis: The isolated minimal antichains are
dense (any non-wqo QC contains an isolated antichain).
Examples:

Graphs:

Just 2 minimal antichains
I0: Cycles (degree at most 2—unique isolated)

I1: Bridges: (not isolated)

Colored Paths

Corollary
In the cases of graphs and colored paths, the isolated
minimal antichains are dense, the associated ideals are
effectively recognizable, and the recognition of wqo classes
given by finitely many constraints is effective, in polynomial
time.



Structure/Nonstructure
for Classes of
Finite Models

Gregory
Cherlin

WQO/¬WQO

Universality /
Nonuniversal-
ity

Isolated antichains

Density Hypothesis: The isolated minimal antichains are
dense (any non-wqo QC contains an isolated antichain).
Examples:

Graphs: Just 2 minimal antichains
I0: Cycles (degree at most 2—unique isolated)

I1: Bridges: (not isolated)

Colored Paths

Corollary
In the cases of graphs and colored paths, the isolated
minimal antichains are dense, the associated ideals are
effectively recognizable, and the recognition of wqo classes
given by finitely many constraints is effective, in polynomial
time.



Structure/Nonstructure
for Classes of
Finite Models

Gregory
Cherlin

WQO/¬WQO

Universality /
Nonuniversal-
ity

Isolated antichains

Density Hypothesis: The isolated minimal antichains are
dense (any non-wqo QC contains an isolated antichain).
Examples:

Graphs: Just 2 minimal antichains
I0: Cycles (degree at most 2—unique isolated)

I1: Bridges: (not isolated)

Colored Paths

Proposition
Among vertex-colored paths, the minimal antichains are
quasi-periodic, that is they consist of a periodic part
augmented by a first and last vertex which break the
periodicity.

Corollary
In the cases of graphs and colored paths, the isolated
minimal antichains are dense, the associated ideals are
effectively recognizable, and the recognition of wqo classes
given by finitely many constraints is effective, in polynomial
time.
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A finiteness Theorem

Theorem (Cherlin-Latka 2000)
Let Q be a wellfounded quasiorder. Then for each k, there
is a finite set Λk of minimal antichains, such that any
non-wqo QC with |C| ≤ k allows one of the antichains in Λk
(up to a finite set).

Corollary

If the ideals Q<I are computable for I ∈ Λk , then the
decision problem for wqo with respect to k + 1 constraints is
decidable.
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Theorem (Cherlin-Latka 2000)
Let Q be a wellfounded quasiorder. Then for each k, there
is a finite set Λk of minimal antichains, such that any
non-wqo QC with |C| ≤ k allows one of the antichains in Λk
(up to a finite set).

Proof.
Induction. Start with Λk+1 = Λk and consider constraints
C = {c1, . . . , ck+1} for which this is inadequate.
Ci = C \ {ci}. If QCi is wqo, no worries.

Suppose some I ∈ Λk is compatible with QCi . If I is
compatible with ci , no worries.
Remaining case: ci ∈ Q<Ii , Ii ∈ Λk .
C ∈

∏
i Q<Ii a wqo. So there are finitely many minimal

cases; expand Λk by witnesses for the minimal cases.

Corollary

If the ideals Q<I are computable for I ∈ Λk , then the
decision problem for wqo with respect to k + 1 constraints is
decidable.
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The case of tournaments

Λ1 is known and consists of effective, isolated antichains
(Latka).

Therefore the wqo problem is decidable (in polynomial time)
for the case of 2 constraints.
Λ2 has not been computed and there is no known bound on
its size.
There are a number of faithful embeddings of 2-colored
paths into tournaments as illustrated earlier. One needs a
set of tournaments that encode a successor relation, and
then an additional vertex will encode the colors.
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Problems around WQO for QC

Show these problems are non-trivial.
Reduction theorems (e.g., to tournaments)?
Permutation patterns - almost nothing is known.
Better wqo theorems for
substructures—Robertson/Seymour techniques?
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Around Universality

This time we consider countable C-free structures and ask
whether there is a universal one.

Observation: if we take C as a forbidden set of induced
substructures then this problem is undecidable, in general.

Hao Wang’s domino problem: T is a finite set of square
tiles, together with horizontal and vertical tiling constraints.
The problem is to tile the plane completely.

Encoding by structures: a graph G with maximum vertex
degree 2, tiling relations Ti(u, v) on G2, and a unary
predicate A on G. There is a universal graph if and only if
there is no tiling—then the components of G are finite, of
bounded size.
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A reduction theorem

Back to the case of forbidden substructures.

Theorem (Cherlin-Shi)
The universality problem for general relational systems in a
finite language reduces to the case of graphs with a vertex
coloring by two colors.
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A criterion for universality

The operator aclC
u ∈ aclC(A) (relative to G) if the set of images of u under
embeddings G→ G∗ over A is of bounded size (where G∗ is
C-free).

The operator aclC is locally finite if aclC(A) is finite for A finite.

Theorem (CSS)
If aclC is locally finite, there is a univeral C-free graph.
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The case of one constraint

Füredi-Komjáth: For a 2-connected constraint C, there is a
universal C-free graph if and only if C is complete.

Cherlin-Shelah: For C a tree, there is a universal C-free
graph if and only if C is a near-path.

Blocks and trees:
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1 Constraint, continued

Solidity Conjecture: If there is a universal C-free graph then
the blocks of C are complete.

We may hope that the underlying structure is generally a
near-path, with specific exceptions.
But:

Conjecture
Let C be a graph obtained from a complete graph K by
adjoining one path to each vertex. Then aclC is locally finite
and so there is a universal C-free graph.
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Problems around Universality for QC

Problem
Is there any signature for which the universality problem
(with forbidden substructures) becomes undecidable?

Problem
What about the case of graphs of bounded vertex degree?

The general theory degenerates: acl(A) is simply the union
of the connected components of a ∈ A and the question is
(mainly) whether there is an infinite connected graph in the
class.

S2S?
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Summing up

Dichotomies

1 wqo
2 universality

1 Ideas: Extended Kruskal, Graph Minor Theorem,
reverse mathematics, reduction theorems,
computability theory, explicit combinatorics.

2 Ideas: Algebraic closure, automata theory, explicit
combinatorics.
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