Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Metrically Homogeneous Graphs

Gregory Cherlin

March 10, 2012, NYC MAMLS

Metrically Homogeneous Graphs

Gregory Cherlin

Metric Homogeneity

Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Metric Homogeneity

- Special Cases
- Regular Trees
- Diameter 2
- Urysohn Graphs

Automorphism Groups

Variations

The Catalog

- First Try
- Second Try
- Enter Presburger

Homogeneity

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity

Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Definition

1. A metric space is homogeneous iff every isometry between finite parts is induced by a self-isometry of the whole.

2. A graph is metrically homogeneous iff it is homogeneous under the graph metric.

Problem (Cameron)

Classify the metrically homogeneous graphs.

A census of infinite distance-transtive graphs http:www.maths.qmul.ac.uk/~pjc/preprints

Special Cases

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

- Regular trees
- Diameter 2
- Urysohn graphs

Regular trees T(r)

Semiregular trees and the Macpherson graphs

Metrically Homogeneous Graphs Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger T(r, s): alternately r, s-branching Metrically homogeneous, modulo a bipartition.

Semiregular trees and the Macpherson graphs

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger T(r, s): alternately r, s-branching Metrically homogeneous, modulo a bipartition.

Obtain a metrically homogeneous graph on each half by rescaling—

 $T_{r,s}$ and $T_{s,r}$ Macpherson graph: an *r*-tree of *s*-cliques, or vice versa.

Homogeneous Graphs

Metrically Homogeneous Graphs

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Theorem (Lachlan/Woodrow)

- $C_5, K_3 \otimes K_3$
- $m \cdot K_n$ and its complement (*m*-partite).
- The Henson graphs Γ_n and their complements.
- The random graph

Amalgamation Classes

Amalgamation Classes

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Remark (Fraïssé)

If Γ is a homogeneous structure then the category $\operatorname{Sub}(\Gamma)$ of f.g. substructures has the amalgamation property and joint embedding.

Amalgamation Classes

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Remark (Fraïssé)

If Γ is a homogeneous structure then the category $\operatorname{Sub}(\Gamma)$ of f.g. substructures has the amalgamation property and joint embedding.

There is a converse ...

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Definition (Amalgamation Class)

A set \mathcal{A} of f.g. structures is an amalgamation class if

- It is closed under isomorphism and substructure;
- It has the joint embedding and amalgamation properties

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Definition (Amalgamation Class)

A set \mathcal{A} of f.g. structures is an amalgamation class if

- It is closed under isomorphism and substructure;
- It has the joint embedding and amalgamation properties

Theorem (Fraïssé)

If A is an amalgamation class with countably many isomorphism types then there is a unique countable homogeneous structure Γ with $Sub(\Gamma) = A$

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Definition (Amalgamation Class)

A set \mathcal{A} of f.g. structures is an amalgamation class if

- It is closed under isomorphism and substructure;
- It has the joint embedding and amalgamation properties

Theorem (Fraïssé)

If A is an amalgamation class with countably many isomorphism types then there is a unique countable homogeneous structure Γ with $Sub(\Gamma) = A$

Example

 $(\mathbb{Q},<)$ is the Fraïssé limit of the class $\mathcal L$ of finite linear orders.

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Definition (Amalgamation Class)

A set \mathcal{A} of f.g. structures is an amalgamation class if

- It is closed under isomorphism and substructure;
- It has the joint embedding and amalgamation properties

Theorem (Fraïssé)

If A is an amalgamation class with countably many isomorphism types then there is a unique countable homogeneous structure Γ with $Sub(\Gamma) = A$

Example

The random graph Γ is the Fraïssé limit of the class ${\cal G}$ of all finite graphs.

The Henson Graphs

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger \mathcal{A}_n : Graphs omitting K_n . Fraïssé limit Γ_n . Free amalgamation.

The Henson Graphs

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger \mathcal{A}_n : Graphs omitting K_n . Fraïssé limit Γ_n . Free amalgamation.

Remark

The complement of a homogeneous graph is homogeneous

Lachlan/Woodrow

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Theorem

An amalgamation class of graphs which contains arbitrarily large independent sets, a path of length 2, and its complement, as well as K_{n-1} , contains every finite graph not containing K_n .

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Fréchet's problem: is there a universal separable complete metric space?

Metrically Homogeneous Graphs

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger Fréchet's problem: is there a universal separable complete metric space? Urysohn, 1924: \mathbb{U} is the completion of the universal homogeneous rational metric space $\mathbb{U}_{\mathbb{Q}}$.

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger Fréchet's problem: is there a universal separable complete metric space? Urysohn, 1924: \mathbb{U} is the completion of the universal homogeneous rational metric space $\mathbb{U}_{\mathbb{Q}}$.

... in addition [it] satisfies a quite powerful condition of homogeneity: the latter being, that it is possible to map the whole space onto itself (isometrically) so as to carry an arbitrary finite set M into an equally arbitrary set M_1 , congruent to the set M.

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger Fréchet's problem: is there a universal separable complete metric space? Urysohn, 1924: \mathbb{U} is the completion of the universal homogeneous rational metric space $\mathbb{U}_{\mathbb{Q}}$.

... in addition [it] satisfies a quite powerful condition of homogeneity: the latter being, that it is possible to map the whole space onto itself (isometrically) so as to carry an arbitrary finite set M into an equally arbitrary set M_1 , congruent to the set M.

 $\mathbb{U}_\mathbb{Q}$ is the Fraïssé limit of the class of finite rational metric spaces.

Amalgamation of Metric Spaces

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

$$\begin{array}{l} d^+(a,b) = \mathsf{inf}_x(d_1(a,x) + d_2(x,b)) \\ d^-(a,b) = \mathsf{sup}_x \left| d_1(a,x) - d_2(x,b) \right| \\ d^-(a,b) \leq r \leq d^+(a,b) \end{array}$$

Example

The set of all finite rational metric spaces of diameter at most 1 is an amalgamation class.

The Urysohn "sphere" $\mathbb{S}_{\mathbb{Q}}$.

Urysohn Graphs

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphisn Groups

Variations

The Catalog First Try Second Try Enter Presburger

$\mathbb{U}_{\mathbb{Z}}$

 \mathbb{Z} -valued and 1-connected, hence metrically transitive. Sphere variations $\mathbb{U}_{\mathbb{Z}}^{\delta}$: diameter δ .

Metrically Homogeneous Graphs

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Metric Homogeneity

- Special Cases
- Regular Trees
- Diameter 2
- Urysohn Graphs

Automorphism Groups

Variations

2

The Catalog

- First Try
- Second Try
- Enter Presburger

Topology

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

$G = Aut(\Gamma)$ closed subgroup of $Sym(\mathbb{N})$ (Polish group)

Topology

Metrically Homogeneous Graphs

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger $G=\operatorname{Aut}(\Gamma)$ closed subgroup of $\operatorname{Sym}(\mathbb{N})$ (Polish group)

Topological dynamics: compact flows, minimal compact flows, universal minimal compact flows.

Topology

Metrically Homogeneous Graphs

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger $G = Aut(\Gamma)$ closed subgroup of $Sym(\mathbb{N})$ (Polish group)

Topological dynamics: compact flows, minimal compact flows, universal minimal compact flows.

Fixed-point property (extreme amenability): Every compact flow has a fixed point.

Kechris, Pestov, Todorcevič

Metrically Homogeneous Graphs

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Theorem (Pestov)

Aut(\mathbb{Q} , <) is extremely amenable.

Proof.

Ramsey's theorem.

Kechris, Pestov, Todorcevič

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Theorem (Pestov)

Aut(\mathbb{Q} , <) is extremely amenable.

Proof.

Ramsey's theorem.

Theorem (KPT)

The universal ordered rational Urysohn space is extremely amenable.

Proof.

Structural Ramsey theory for finite rational valued metric spaces. (Nešetřil, on demand.)

Removing order

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Theorem

The universal compact flow for $\mathbb{U}_{\mathbb{Q}}$ is the space of orders.

General Theory: Kechris/Pestov/Todorcevič

Removing order

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Theorem

The universal compact flow for $\mathbb{U}_{\mathbb{Q}}$ is the space of orders.

General Theory: Kechris/Pestov/Todorcevič

Project. For natural homogeneous structures, find orders for which there is a Ramsey theorem.

Metrically Homogeneous Graphs

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Metric Homogeneity

- Special Cases
- Regular Trees
- Diameter 2
- Urysohn Graphs

Automorphism Groups

3 Variations

The Catalog

- First Try
- Second Try
- Enter Presburger

Variations

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

- Henson Variations
- KMP Variations

Henson Variations

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

```
Diameter \delta. 1 < d<sup>+</sup> and d<sup>-</sup> < \delta.
(1,\delta)-spaces
S: a set of (1,\delta)-spaces.
```

Remark

Let S be a set of $(1, \delta)$ spaces, and A_S the class of S-free \mathbb{Z} -valued metric spaces of diameter at most δ . If $\delta > 2$, then A_S is an amalgamation class.

KMP Variations

Metrically Homogeneous Graphs

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Theorem

Let C be any of the following:

• The set \mathcal{C}_K of odd cycles of length bounded by 2K + 1.

• The set \mathcal{C}_C of cycles of perimeter at least C.

Then there is a universal C-free graph.

KMP Variations

Metrically Homogeneous Graphs

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Theorem

Let C be any of the following:

- The set \mathcal{C}_K of odd cycles of length bounded by 2K + 1.
- The set C_C of cycles of perimeter at least C.

Then there is a universal C-free graph.

Proof.

Amalgamation in an augmented language, resembling a metric structure.

KMP Variations

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Theorem

Let \mathcal{C} be any of the following:

- The set $\mathcal{C}_{\rm K}$ of odd cycles of length bounded by $2{\rm K}+1.$
- The set C_C of cycles of perimeter at least C.

Then there is a universal C-free graph.

Theorem

Let $\mathcal{A}_{K,C}^{\delta}$ be the class of finite metric spaces of diameter at most δ such that

- There is no triangle of odd perimeter less than 2K + 1
- There is no triangle of perimeter greater than or equal to C.

Then for $\delta \geq$ 3 and subject to minor constraints, $\mathcal{A}_{K,C}^{\delta}$ is an amalgamation class.

 $\mathcal{A}_{\mathcal{K}}$

Metrically Homogeneous Graphs

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Amalgamation Procedure (\mathcal{A}_K)

- d^- if $d^- > K$;
- d^+ if $d^+ \leq K$;
- Else K.

Metrically Homogeneous Graphs

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog

First Try Second Try Enter Presburger

Metric Homogeneity

- Special Cases
- Regular Trees
- Diameter 2
- Urysohn Graphs
- Automorphism Groups
- **Variations**

4

- The Catalog
 - First Try
 - Second Try
 - Enter Presburger

First Try

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

- $\delta \leq$ 2; or
- Finite; or
- *T_{r,s}*; or
 Γ^δ_{Δ:S}

Here Δ stands for a set of constraints on triangles.

Conjecture (Leibniz/Candide)

 Δ means (K, C)

First Correction

Metrically Homogeneous Graphs

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Antipodal Graphs

 $C = 2\delta + 1$, i.e.:

For each vertex *v* there is a unique paired vertex *v'* at distance δ.

•
$$d(u, v') = \delta - d(u, v)$$

First Correction

Metrically Homogeneous Graphs

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Antipodal Graphs

 $C = 2\delta + 1$, i.e.:

For each vertex *v* there is a unique paired vertex *v'* at distance δ.

•
$$d(u, v') = \delta - d(u, v)$$

There is a Henson variation involving cliques K_n But then one must exclude pairs K_k , K_l at distance $\delta - 1$. Strange ...

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Wrong about Δ .

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Wrong about Δ . In fact, I published 10 counterexamples in 1998 ...

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger Wrong about Δ . In fact, I published 10 counterexamples in 1998 ... But I didn't know it.

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger Wrong about Δ . In fact, I published 10 counterexamples in 1998 ... But I didn't know it.

(27 amalgamation classes with 4 2-types, 18 can be interpreted as metric spaces, leading to 20 examples, 10 of them not of the above form.)

The right Δ

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger $C = (C_0, C_1)$: C_0 controls even perimeter; C_1 controls odd perimeter; and in the most common case they do indeed differ by 1, and we take $C = \min(C_0, C_1)$

The right Δ

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger $C = (C_0, C_1)$: C_0 controls even perimeter; C_1 controls odd perimeter.

 $K = (K_1, K_2)$

 K_1 controls small odd perimter.

K₂ forbids odd perimeters P satisfying

$$P > 2K_2 + d(a, b)$$

The right Δ

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger $C = (C_0, C_1)$: C_0 controls even perimeter; C_1 controls odd perimeter.

 $K = (K_1, K_2)$

 K_1 controls small odd perimter.

K₂ forbids odd perimeters P satisfying

$$P > 2K_2 + d(a, b)$$

Theorem

If a metrically homogeneous graph of bounded diameter is determined by constraints of order 3, the associated amalgamation class is of the form

$$\mathcal{A}^{\delta}_{\mathcal{K},\mathcal{C}}$$

with $K = (K_1, K_2)$, $C = (C_0, C_1)$ as above.

Second Try

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger • $\delta \leq 2$; or

Finite; or

- *T_{r,s}*; or
- $\Gamma^{\delta}_{\Delta;S}$; or even
- The antipodal variations $\mathcal{A}_{a;n}^{\delta} = \mathcal{A}_{1,2\delta+1;S'_n}^{\delta}$

Here Δ stands for a set of constraints on triangles such that $\mathcal{A}^{\delta}_{\Lambda}$ is an amalgamation class.

I.e.: $\Delta = (K, C)$ with $K = (K_1, K_2)$ and $C = (C_0, C_1)$ as described.

Second Try

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger • $\delta \leq 2$; or

Finite; or

- *T_{r,s}*; or
- $\Gamma^{\delta}_{\Delta;S}$; or even
- The antipodal variations $\mathcal{A}_{a;n}^{\delta} = \mathcal{A}_{1,2\delta+1;S'_n}^{\delta}$

Here Δ stands for a set of constraints on triangles such that $\mathcal{A}^{\delta}_{\Lambda}$ is an amalgamation class.

I.e.: $\Delta = (K, C)$ with $K = (K_1, K_2)$ and $C = (C_0, C_1)$ as described.

Second Try

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger • $\delta \leq 2$; or

Finite; or

- *T_{r,s}*; or
- $\Gamma^{\delta}_{\Delta;S}$; or even
- The antipodal variations $\mathcal{A}_{a;n}^{\delta} = \mathcal{A}_{1,2\delta+1;S'_n}^{\delta}$

Here Δ stands for a set of constraints on triangles such that $\mathcal{A}^{\delta}_{\Delta}$ is an amalgamation class.

I.e.: $\Delta = (K, C)$ with $K = (K_1, K_2)$ and $C = (C_0, C_1)$ as described.

Problem

But which of these classes actually is an amalgamation class?

Enter Presburger Arithmetic

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger $\mathcal{A}_{K,C}^{\delta}$ is given by a set of triples $T_{\delta,K,C} \subseteq \mathbb{N}^3$ with δ, K, C standing for 5 positive integer parameters. This is a uniformly definable family in the language of Presburger Arithmetic.

Enter Presburger Arithmetic

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger $\mathcal{A}_{K,C}^{\delta}$ is given by a set of triples $\mathcal{T}_{\delta,K,C} \subseteq \mathbb{N}^3$ with δ, K, C standing for 5 positive integer parameters. This is a uniformly definable family in the language of Presburger Arithmetic.

For fixed *n*, the *n*-amalgamation condition (amalgamation up to order *n*) is a definable property in the same language. Therefore the sets A(n) of parameters (δ , K, C) for which $\mathcal{A}_{K,C}^{\delta}$ has the *n*-amalgamation property form a decreasing sequence of Presburger-definable sets; and we want the intersection.

Admissible Choices of Parameters

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Theorem

The following are equivalent.

- $\mathcal{A}_{\mathcal{K},\mathcal{C}}^{\delta}$ has amalgamation.
- $\mathcal{A}_{K,C}^{\delta}$ has 5-amalgamation.

Admissible Choices of Parameters

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Theorem

The following are equivalent.

• $\mathcal{A}_{K,C}^{\delta}$ has amalgamation.

• $\mathcal{A}_{K,C}^{\delta}$ has 5-amalgamation.

Proof.

We write down the exact conditions for 5-amalgamation ... and then give an amalgamation procedure that works.

Admissible Choices of Parameters

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Theorem

The following are equivalent.

- $\mathcal{A}_{K,C}^{\delta}$ has amalgamation.
- $\mathcal{A}_{K,C}^{\delta}$ has 5-amalgamation.

Proof.

We write down the exact conditions for 5-amalgamation ... and then give an amalgamation procedure that works.

Corollary

The necessary conditions on δ , K, C involve congruences and inequalities, with terms linear in the data.

The Conditions

Metrically Homogeneous Graphs

Enter Presburger

ľ

If
$$C \le 2\delta + K_1$$
:
• $C = 2K_1 + 2K_2 + 1$; $K_1 + K_2 \ge \delta$; $K_1 + 2K_2 \le 2\delta - 1$.
• If $C' > C + 1$ then $K_1 = K_2$ and $3K_2 = 2\delta - 1$
If $C > 2\delta + K_1$:
• $K_1 + 2K_2 \ge 2\delta - 1$, $3K_2 \ge 2\delta$;
• If $K_1 + 2K_2 = 2\delta - 1$ then $C \ge 2\delta + K_1 + 2$.
• If $C' > C + 1$ then $C \ge 2\delta + K_2$.

Let $C = \min(C_0, C_1)$

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

So, is the catalog complete?

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

So, is the catalog complete?

Theorem (Amato/Cherlin/Macpherson, in progress)

The catalog is complete for diameter 3.

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger So, is the catalog complete?

Theorem (Amato/Cherlin/Macpherson, in progress)

The catalog is complete for diameter 3.

Method:

With the triangles settled, we think we know the amalgamation strattegy. Reduce to (1, δ)-spaces.

Metrically Homogeneous Graphs

> Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger So, is the catalog complete?

Theorem (Amato/Cherlin/Macpherson, in progress)

The catalog is complete for diameter 3.

Method:

- Right about the triangles
- With the triangles settled, we think we know the amalgamation strattegy. Reduce to (1, δ)-spaces.

Remark

 Γ_1 is a homogeneous graph; exceptional cases lead to $T_{r,s}$.

A Problem in Topological Dynamics

Metrically Homogeneous Graphs

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Problem

When do we get structural Ramsey theory, if we extend $\mathcal{A}^{\delta}_{\kappa,C}$ to include a suitable ordering?

A Problem in Topological Dynamics

Metrically Homogeneous Graphs

Gregory Cherlin

Metric Homogeneity Special Cases Regular Trees Diameter 2 Urysohn Graphs

Automorphism Groups

Variations

The Catalog First Try Second Try Enter Presburger

Problem

When do we get structural Ramsey theory, if we extend $\mathcal{A}_{K,C}^{\delta}$ to include a suitable ordering?

Strong conjecture: exactly when we get amalgamation. Weak conjecture: some Presburger condition.