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Homogeneity

Definition

1. A metric space is homogeneous iff every isometry
between finite parts is induced by a self-isometry of the
whole.
2. A graph is metrically homogeneous iff it is homogeneous
under the graph metric.

Problem (Cameron)
Classify the metrically homogeneous graphs.

A census of infinite distance-transtive graphs
http:www.maths.qmul.ac.uk/∼pjc/preprints
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Special Cases

Regular trees
Diameter 2
Urysohn graphs
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Regular trees T (r)

Reconstruction of the convex closure from the metric.

P = |(a,b, c)| = 2(k + l + m); m = P/2− d(a,b)
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Semiregular trees and the Macpherson graphs

T (r , s): alternately r , s-branching
Metrically homogeneous, modulo a bipartition.

Obtain a metrically homogeneous graph on each half by
rescaling—
Tr ,s and Ts,r Macpherson graph: an r -tree of s-cliques, or
vice versa.
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Semiregular trees and the Macpherson graphs

T (r , s): alternately r , s-branching
Metrically homogeneous, modulo a bipartition.

Obtain a metrically homogeneous graph on each half by
rescaling—
Tr ,s and Ts,r Macpherson graph: an r -tree of s-cliques, or
vice versa.



Metrically Ho-
mogeneous

Graphs

Gregory
Cherlin

Metric
Homogeneity
Special Cases

Regular Trees

Diameter 2

Urysohn Graphs

Automorphism
Groups

Variations

The Catalog
First Try

Second Try

Enter Presburger

Homogeneous Graphs

Theorem (Lachlan/Woodrow)

C5, K3 ⊗ K3

m · Kn and its complement (m-partite).
The Henson graphs Γn and their complements.
The random graph
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Amalgamation Classes

Remark (Fraı̈ssé)

If Γ is a homogeneous structure then the category Sub(Γ) of
f.g. substructures has the amalgamation property and joint
embedding.

Proof.

There is a converse . . .
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Remark (Fraı̈ssé)

If Γ is a homogeneous structure then the category Sub(Γ) of
f.g. substructures has the amalgamation property and joint
embedding.

Proof.

There is a converse . . .
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The Fraı̈ssé limit

Definition (Amalgamation Class)
A set A of f.g. structures is an amalgamation class if

It is closed under isomorphism and substructure;
It has the joint embedding and amalgamation
properties

Theorem (Fraı̈ssé)
If A is an amalgamation class with countably many
isomorphism types then there is a unique countable
homogeneous structure Γ with Sub(Γ) = A

Example

The random graph Γ is the Fraı̈ssé limit of the class G of all
finite graphs.
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Theorem (Fraı̈ssé)
If A is an amalgamation class with countably many
isomorphism types then there is a unique countable
homogeneous structure Γ with Sub(Γ) = A

Example

The random graph Γ is the Fraı̈ssé limit of the class G of all
finite graphs.
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The Fraı̈ssé limit

Definition (Amalgamation Class)
A set A of f.g. structures is an amalgamation class if

It is closed under isomorphism and substructure;
It has the joint embedding and amalgamation
properties

Theorem (Fraı̈ssé)
If A is an amalgamation class with countably many
isomorphism types then there is a unique countable
homogeneous structure Γ with Sub(Γ) = A

Example

(Q, <) is the Fraı̈ssé limit of the class L of finite linear
orders.

Example

The random graph Γ is the Fraı̈ssé limit of the class G of all
finite graphs.
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The Henson Graphs

An: Graphs omitting Kn.
Fraı̈ssé limit Γn.
Free amalgamation.

Remark
The complement of a homogeneous graph is homogeneous
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Lachlan/Woodrow

Theorem
An amalgamation class of graphs which contains arbitrarily
large independent sets, a path of length 2, and its
complement, as well as Kn−1, contains every finite graph
not containing Kn.
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Urysohn space

Fréchet’s problem: is there a universal separable complete
metric space?

Urysohn, 1924: U is the completion of the universal
homogeneous rational metric space UQ.

. . . in addition [it] satisfies a quite powerful condition
of homogeneity: the latter being, that it is possible
to map the whole space onto itself (isometrically)
so as to carry an arbitrary finite set M into an
equally arbitrary set M1, congruent to the set M.

UQ is the Fraı̈ssé limit of the class of finite rational metric
spaces.
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Fréchet’s problem: is there a universal separable complete
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to map the whole space onto itself (isometrically)
so as to carry an arbitrary finite set M into an
equally arbitrary set M1, congruent to the set M.

UQ is the Fraı̈ssé limit of the class of finite rational metric
spaces.
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Urysohn space

Fréchet’s problem: is there a universal separable complete
metric space?
Urysohn, 1924: U is the completion of the universal
homogeneous rational metric space UQ.

. . . in addition [it] satisfies a quite powerful condition
of homogeneity: the latter being, that it is possible
to map the whole space onto itself (isometrically)
so as to carry an arbitrary finite set M into an
equally arbitrary set M1, congruent to the set M.

UQ is the Fraı̈ssé limit of the class of finite rational metric
spaces.
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Amalgamation of Metric Spaces

d+(a, b) = infx(d1(a, x) + d2(x, b))
d−(a, b) = supx |d1(a, x)− d2(x, b)|
d−(a, b) ≤ r ≤ d+(a, b)

Example
The set of all finite rational metric spaces of diameter at
most 1 is an amalgamation class.

The Urysohn “sphere” SQ.
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Urysohn Graphs

UZ

Z-valued and 1-connected, hence metrically transitive.

Sphere variations UδZ: diameter δ.
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Topology

G = Aut(Γ) closed subgroup of Sym(N) (Polish group)

Topological dynamics: compact flows, minimal compact
flows, universal minimal compact flows.

Fixed-point property (extreme amenability): Every compact
flow has a fixed point.
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Topology

G = Aut(Γ) closed subgroup of Sym(N) (Polish group)

Topological dynamics: compact flows, minimal compact
flows, universal minimal compact flows.

Fixed-point property (extreme amenability): Every compact
flow has a fixed point.
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Kechris, Pestov, Todorcevič

Theorem (Pestov)

Aut(Q, <) is extremely amenable.

Proof.
Ramsey’s theorem.

Theorem (KPT)
The universal ordered rational Urysohn space is extremely
amenable.

Proof.
Structural Ramsey theory for finite rational valued metric
spaces.
(Nešetřil, on demand.)
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Kechris, Pestov, Todorcevič

Theorem (Pestov)

Aut(Q, <) is extremely amenable.

Proof.
Ramsey’s theorem.

Theorem (KPT)
The universal ordered rational Urysohn space is extremely
amenable.

Proof.
Structural Ramsey theory for finite rational valued metric
spaces.
(Nešetřil, on demand.)
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Removing order

Theorem
The universal compact flow for UQ is the space of orders.

General Theory: Kechris/Pestov/Todorcevič

Project. For natural homogeneous structures, find orders for
which there is a Ramsey theorem.
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The universal compact flow for UQ is the space of orders.

General Theory: Kechris/Pestov/Todorcevič

Project. For natural homogeneous structures, find orders for
which there is a Ramsey theorem.
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Variations

Henson Variations
KMP Variations
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Henson Variations

Diameter δ. 1 < d+ and d− < δ.
(1, δ)-spaces
S: a set of (1, δ)-spaces.

Remark
Let S be a set of (1, δ) spaces, and AS the class of S-free
Z-valued metric spaces of diameter at most δ. If δ > 2, then
AS is an amalgamation class.
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KMP Variations

Theorem
Let C be any of the following:

The set CK of odd cycles of length bounded by 2K + 1.
The set CC of cycles of perimeter at least C.

Then there is a universal C-free graph.

Theorem

Let AδK,C be the class of finite metric spaces of diameter at
most δ such that

There is no triangle of odd perimeter less than 2K + 1
There is no triangle of perimeter greater than or equal
to C.

Then for δ ≥ 3 and subject to minor constraints, AδK,C is an
amalgamation class.
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KMP Variations

Theorem
Let C be any of the following:

The set CK of odd cycles of length bounded by 2K + 1.
The set CC of cycles of perimeter at least C.

Then there is a universal C-free graph.

Proof.
Amalgamation in an augmented language, resembling a
metric structure.

Theorem

Let AδK,C be the class of finite metric spaces of diameter at
most δ such that

There is no triangle of odd perimeter less than 2K + 1
There is no triangle of perimeter greater than or equal
to C.

Then for δ ≥ 3 and subject to minor constraints, AδK,C is an
amalgamation class.



Metrically Ho-
mogeneous

Graphs

Gregory
Cherlin

Metric
Homogeneity
Special Cases

Regular Trees

Diameter 2

Urysohn Graphs

Automorphism
Groups

Variations

The Catalog
First Try

Second Try

Enter Presburger

KMP Variations

Theorem
Let C be any of the following:

The set CK of odd cycles of length bounded by 2K + 1.
The set CC of cycles of perimeter at least C.

Then there is a universal C-free graph.

Theorem

Let AδK,C be the class of finite metric spaces of diameter at
most δ such that

There is no triangle of odd perimeter less than 2K + 1
There is no triangle of perimeter greater than or equal
to C.

Then for δ ≥ 3 and subject to minor constraints, AδK,C is an
amalgamation class.
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AK

AMALGAMATION PROCEDURE (AK)

d− if d− > K;
d+ if d+ ≤ K;
Else K.
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First Try

δ ≤ 2; or
Finite; or
Tr ,s; or
Γδ∆;S

Here ∆ stands for a set of constraints on triangles.

Conjecture (Leibniz/Candide)

∆ means (K ,C)



Metrically Ho-
mogeneous

Graphs

Gregory
Cherlin

Metric
Homogeneity
Special Cases

Regular Trees

Diameter 2

Urysohn Graphs

Automorphism
Groups

Variations

The Catalog
First Try

Second Try

Enter Presburger

First Correction

Antipodal Graphs

C = 2δ + 1, i.e.:

For each vertex v there is a unique paired vertex v ′ at
distance δ.
d(u, v ′) = δ − d(u, v)

There is a Henson variation involving cliques Kn
But then one must exclude pairs Kk ,Kl at distance δ − 1.
Strange . . .
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First Correction

Antipodal Graphs

C = 2δ + 1, i.e.:

For each vertex v there is a unique paired vertex v ′ at
distance δ.
d(u, v ′) = δ − d(u, v)

There is a Henson variation involving cliques Kn
But then one must exclude pairs Kk ,Kl at distance δ − 1.
Strange . . .
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Second Correction

Wrong about ∆.

In fact, I published 10 counterexamples in 1998 . . .
But I didn’t know it.

(27 amalgamation classes with 4 2-types, 18 can be
interpreted as metric spaces, leading to 20 examples, 10 of
them not of the above form.)
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In fact, I published 10 counterexamples in 1998 . . .
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(27 amalgamation classes with 4 2-types, 18 can be
interpreted as metric spaces, leading to 20 examples, 10 of
them not of the above form.)
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Wrong about ∆.
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But I didn’t know it.
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them not of the above form.)



Metrically Ho-
mogeneous

Graphs

Gregory
Cherlin

Metric
Homogeneity
Special Cases

Regular Trees

Diameter 2

Urysohn Graphs

Automorphism
Groups

Variations

The Catalog
First Try

Second Try

Enter Presburger

The right ∆

C = (C0,C1): C0 controls even perimeter; C1 controls odd
perimeter; and in the most common case they do indeed
differ by 1, and we take C = min(C0,C1)

K = (K1,K2)
K1 controls small odd perimter.
K2 forbids odd perimeters P satisfying

P > 2K2 + d(a,b)

Theorem
If a metrically homogeneous graph of bounded diameter is
determined by constraints of order 3, the associated
amalgamation class is of the form

AδK ,C

with K = (K1,K2), C = (C0,C1) as above.
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C = (C0,C1): C0 controls even perimeter; C1 controls odd
perimeter.

K = (K1,K2)
K1 controls small odd perimter.
K2 forbids odd perimeters P satisfying

P > 2K2 + d(a,b)

Theorem
If a metrically homogeneous graph of bounded diameter is
determined by constraints of order 3, the associated
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Metrically Ho-
mogeneous

Graphs

Gregory
Cherlin

Metric
Homogeneity
Special Cases

Regular Trees

Diameter 2

Urysohn Graphs

Automorphism
Groups

Variations

The Catalog
First Try

Second Try

Enter Presburger

Second Try

δ ≤ 2; or
Finite; or
Tr ,s; or
Γδ∆;S ; or even

The antipodal variations Aδa;n = Aδ1,2δ+1;S′n

Here ∆ stands for a set of constraints on triangles such that
Aδ∆ is an amalgamation class.
I.e.: ∆ = (K ,C) with K = (K1,K2) and C = (C0,C1) as
described.

Problem
But which of these classes actually is an amalgamation
class?
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Enter Presburger Arithmetic

AδK ,C is given by a set of triples Tδ,K ,C ⊆ N3 with δ,K ,C
standing for 5 positive integer parameters.
This is a uniformly definable family in the language of
Presburger Arithmetic.

For fixed n, the n-amalgamation condition (amalgamation
up to order n) is a definable property in the same language.
Therefore the sets A(n) of parameters (δ,K ,C) for which
AδK ,C has the n-amalgamation property form a decreasing
sequence of Presburger-definable sets; and we want the
intersection.
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Admissible Choices of Parameters

Theorem
The following are equivalent.
AδK ,C has amalgamation.

AδK ,C has 5-amalgamation.

Proof.
We write down the exact conditions for 5-amalgamation
. . . and then give an amalgamation procedure that
works.

Corollary
The necessary conditions on δ,K ,C involve congruences
and inequalities, with terms linear in the data.
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The Conditions

Let C = min(C0,C1)

If C ≤ 2δ + K1:
C = 2K1 + 2K2 + 1; K1 + K2 ≥ δ; K1 + 2K2 ≤ 2δ − 1.
If C′ > C + 1 then K1 = K2 and 3K2 = 2δ − 1

If C > 2δ + K1:
K1 + 2K2 ≥ 2δ − 1, 3K2 ≥ 2δ;
If K1 + 2K2 = 2δ − 1 then C ≥ 2δ + K1 + 2.
If C′ > C + 1 then C ≥ 2δ + K2.
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Is that all?

So, is the catalog complete?

Theorem (Amato/Cherlin/Macpherson, in progress)
The catalog is complete for diameter 3.

Method:
1 Right about the triangles
2 With the triangles settled, we think we know the

amalgamation strattegy. Reduce to (1, δ)-spaces.

Remark
Γ1 is a homogeneous graph; exceptional cases lead to Tr ,s.
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A Problem in Topological Dynamics

Problem
When do we get structural Ramsey theory, if we extend
AδK ,C to include a suitable ordering?

Strong conjecture: exactly when we get amalgamation.
Weak conjecture: some Presburger condition.

?
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