Gregory Cherlin

Rutgers The State University of New Jersey

Jan. 8, San Diego

- \blacksquare Model Theory of $\mathbb C$
- Diophantine problems in commutative algebraic groups
- \blacksquare Definably compact groups in expansions of $\mathbb R$
- **Finite dimensional simple groups**

Model Theory of C

1 [Model Theory of](#page-2-0) $\mathbb C$

- **2** [Geometric Mordell/Lang](#page-12-0)
- 3 [Pillay's Conjectures](#page-27-0)
- **4 [Simple Groups of finite Morley rank](#page-49-0)**

Model Theory of $\mathbb C$

- \blacksquare The Nullstellensatz
- Structure theory

The Nullstellensatz (1893)

Theorem

TFAE

\n- **1**
$$
V_K(f_1, \ldots, f_n)
$$
 has a point.
\n- **2** $V_{K'}(f_1, \ldots, f_n)$ has a point (some $K' \supseteq K$)
\n- **3** $1 \notin (f_1, \ldots, f_n)$
\n

 $2 \iff 3: K' = K[X]/m$ $1 \iff 2$: this could be a definition ... (Abraham Robinson) "Existentially closed" fields

Existentially closed ...

Ordered fields: Artin-Schreier (Hilbert's 17th problem) 1927 *p*-adically closed fields: Ax-Kochen 1965—Integrality-satz Differentially closed fields: Seidenberg 1956/Robinson 1959 Separably closed fields: Ershov 1967 Existentially closed difference fields (ACFA): 1990's

• "Applied" model theory

Existentially closed ...

Ordered fields: Artin-Schreier (Hilbert's 17th problem) 1927 *p*-adically closed fields: Ax-Kochen 1965—Integrality-satz Differentially closed fields: Seidenberg 1956/Robinson 1959 Separably closed fields: Ershov 1967 Existentially closed difference fields (ACFA): 1990's

• "Applied" model theory

Question: Can one do "geometry" over any theory?

Structure Theory

Steinitz 1910

Transcendence basis, uniqueness of algebraic closure.

Corollary

*Any ACF*⁰ *of cardinality c is isomorphic to* C*.*

 κ -categoricity (for κ uncountable) $\kappa = \aleph_0$? (\mathbb{Q}, \lt): something else entirely Morley 1963 (answering Łoś): κ categoricity for one uncountable κ implies κ -categoricity for all

• "Pure" model theory

Dimension

Lemma (Morley)

If M is a model of an uncountably categorical theory then M has a well behaved notion of dimension for definable sets.

• Terminology: Morley rank, rk

 $\operatorname{rk\,}:\bigcup_{n}\operatorname{\sf Def}(M^n)\rightarrow\operatorname{\sf ordinals}$

 $ACF:$ rk $(X) = \dim(\bar{X})$

Bonus: dimensions are actually finite (Baldwin, Zilber).

Worlds Collide I

Theorem (Lindstrøm)

If a theory is κ*-categorical and closed under unions of increasing chains, then its infinite models are existentially closed.*

Proof.

Suppose not. Build M_1 and M_2 both of cardinality κ , one existentially closed and the other not. (M_1) : trivial

(*M*₂): cardinality shifting (Löwenheim-Skolem)

Worlds Collide II

Lenore Blum (1968): Differentially closed fields have Morley rank ω .

Application: uniqueness of differential closure (via Shelah).

Angus Macintyre (1971): fields with Morley rank are algebraically closed

Carol Wood (1979): separably closed fields are "stable" (local Morley rank)

Worlds Collide III

Hrushovski 1996: Geometric Mordell-Lang in all characteristics, with uniformities, via the model theory of abelian groups of finite Morley rank.

1 [Model Theory of](#page-2-0) $\mathbb C$

2 [Geometric Mordell/Lang](#page-12-0)

3 [Pillay's Conjectures](#page-27-0)

4 [Simple Groups of finite Morley rank](#page-49-0)

Mordell/Faltings: Finiteness of rational points in genus ≥ 2 .

 $C \hookrightarrow J(C)$ Jacobian (abelian variety), dim(*J*) = genus(*C*) elliptic curve

Mordell/Weil: finite generation of rational points on an abelian variety.

Mordell/Lang: *C* ∩ Γ for Γ of finite rank.

Geometric Mordell/Lang

An analog of Mordell/Lang for K a function field over K_0

Theorem

X ⊆ *A K*/*K*⁰ *function field, X* ∩ Γ *Zariski dense.*

Then either Stab(X) *is infinite or X comes from* K_0 *.*

Geometric Mordell/Lang

An analog of Mordell/Lang for K a function field over K_0

Theorem

X ⊆ *A K*/*K*⁰ *function field, X* ∩ Γ *Zariski dense.* Γ *a subgroup of finite rank defined over the algebraic closure of K . Then either Stab*(*X*) *is infinite or there is a bijective morphism* $X \leftrightarrow X_0$ *onto a variety* X_0 *defined over* K_0 *.*

Groups of finite Morley rank?

Morley rank is an abstraction of dim, the main case being the classical one. How can it help?

Groups of finite Morley rank?

Morley rank is an abstraction of dim, the main case being the classical one. How can it help?

Manin, Buium, ... use additional structure

K embeds into a differentially closed field \hat{K} with K_0 as the constant field.

Then Γ embeds into a \hat{K} -definable group of finite Morley rank $\hat{\Gamma}$. Why not $\Gamma = A$?

Groups of finite Morley rank?

Morley rank is an abstraction of dim, the main case being the classical one. How can it help?

Manin, Buium, ... use additional structure

K embeds into a differentially closed field \hat{K} with K_0 as the constant field.

Then Γ embeds into a \hat{K} -definable group of finite Morley rank $\hat{\Gamma}$. Why not $\Gamma = A$?

 $rk(K) = \omega$, so now finite rank is a *finiteness condition* on Γ Now study *X* ∩ Γˆ.

Lost: the apparatus of algebraic geometry.

Kept: the theory of dimension.

Zariski Geometries

Irreducible one-dimensional sets (curves). Zilber's Conjecture: degenerate, linear, or fields.

Zariski Geometries

Irreducible one-dimensional sets (curves). Zilber's Conjecture: degenerate, linear, or fields. False (Hrushovski 1988); rescued by *Zariski geometries* (Hrushovski,Zilber 1996)

Zariski Geometries

Irreducible one-dimensional sets (curves). Zilber's Conjecture: degenerate, linear, or fields. False (Hrushovski 1988); rescued by *Zariski geometries* (Hrushovski,Zilber 1996) Applies to finite dimensional sets in differentially closed fields by quantifier elimination (theory of prolongations)

Geometric Mordell/Lang

How to get characteristic *p*.

LGeometric Mordell/Lang

How to get characteristic *p*. Replace *DCF* by *SCF*, rinse, and repeat.

How to get characteristic *p*. Replace *DCF* by *SCF*, rinse, and repeat. Lose Morley rank, keep stability. E.g.: $\mathcal{K}_0 = \bigcap \hat{\mathcal{K}}^{\rho^n}$ (not even definable . . .)

How to get characteristic *p*. Replace *DCF* by *SCF*, rinse, and repeat. Lose Morley rank, keep stability. E.g.: $\mathcal{K}_0 = \bigcap \hat{\mathcal{K}}^{\rho^n}$ (not even definable . . .) Manin-Mumford: via ACFA, not even stable, (Chatzidakis, Hrushovski)

How to get characteristic *p*. Replace *DCF* by *SCF*, rinse, and repeat. Lose Morley rank, keep stability. E.g.: $\mathcal{K}_0 = \bigcap \hat{\mathcal{K}}^{\rho^n}$ (not even definable . . .) Manin-Mumford: via ACFA, not even stable, (Chatzidakis, Hrushovski) • Plug in various expansions of *ACF* More: Scanlon, BSL 7 (2001)

Drinfeld modules, André-Oort

1 [Model Theory of](#page-2-0) $\mathbb C$

2 [Geometric Mordell/Lang](#page-12-0)

3 [Pillay's Conjectures](#page-27-0)

4 [Simple Groups of finite Morley rank](#page-49-0)

Pillay's Conjectures

Definition

A structure with an ordering is *o-minimal* if every definable subset is a finite union of intervals.

Ref: van den Dries 1998: **Tame Topology and o-minimal structures**

Wilkie 1996: Reals with exponentiation Speissegger 2000: the "Pfaffian closure" (Hovanski)

Groups definable in *o*-minimal structures

Generalized infinitesimals: *G*[○]°

The intersection of the ∞-definable subgroups of *bounded index.*

Existence is highly nontrivial; granted existence, the quotient is a compact topological group in the "logic topology" (definable \rightarrow closed).

Groups definable in *o*-minimal structures

Generalized infinitesimals: *G*[○]°

The intersection of the ∞-definable subgroups of *bounded index.*

Existence is highly nontrivial; granted existence, the quotient is a compact topological group in the "logic topology" (definable \rightarrow closed).

Example. (S^1) ^{oo} is the infinitesimal neighborhood of the identity. The quotient is S^1 and will be S^1 even if the model is extended.

Groups definable in *o*-minimal structures

Generalized infinitesimals: *G*[○]°

The intersection of the ∞-definable subgroups of *bounded index.*

Existence is highly nontrivial; granted existence, the quotient is a compact topological group in the "logic topology" (definable \rightarrow closed).

Example. (S^1) ^{oo} is the infinitesimal neighborhood of the identity. The quotient is S^1 and will be S^1 even if the model is extended. Example. $(R, +)$: now the infinitesimals have unbounded index and *R*[○] turns out to be *R*, with trivial quotient.

Groups definable in *o*-minimal structures

Generalized infinitesimals: *G*[○]°

The intersection of the ∞-definable subgroups of *bounded index.*

Existence is highly nontrivial; granted existence, the quotient is a compact topological group in the "logic topology" (definable \rightarrow closed).

Example. (S^1) ^{oo} is the infinitesimal neighborhood of the identity. The quotient is S^1 and will be S^1 even if the model is extended. Example. $(R,+)$: now the infinitesimals have unbounded index and *R*[○] turns out to be *R*, with trivial quotient.

Restrict to: *definably compact groups*

Pillay's conjectures

Theorem

G/*G*◦◦ *is a compact Lie group, of the same real dimension as the formal dimension of G.*

- 1 A descending chain condition for ∞ -definable subgroups;
- 2 Control of dimension (?)

- \blacksquare Structure theory (simple case)
- Topology (abelian case)
- Model theory (mixed case)

Theorem (PPS 2000-2002)

Let G be a definably simple group in an o-minimal structure. Then G is a model of the same theory as some definably simple Lie group.

In the noncompact case $G[°] = G$ which is sad, but in the compact case *G*◦◦ is the infinitesimal neighborhood of the identity and *G*/*G*◦◦ is the corresponding compact Lie group.

Abelian Groups

$$
\bar{A} = A/A^{\circ \circ}.
$$
\n1 $\bar{A}[m] \simeq (\mathbb{Z}/m\mathbb{Z})^{\dim \bar{G}}$ (clear)
\n2 $A[m] \simeq (\mathbb{Z}/m\mathbb{Z})^{\dim G}$ (cohomology)
\n3 $A[m] \simeq \bar{A}[m]$ (model theory)

A little model theory

• *X* ⊆ *G* is *generic* if finitely many translates cover *G*.

A little model theory

• *X* ⊆ *G* is *generic* if finitely many translates cover *G*.

From stable group theory: when we have Morley rank, *X* is generic iff dim $X = \dim G$. (False here.) Somewhere between: $\dim(G \setminus X) < \dim G$ and $\dim X = \dim G$.

A little model theory

• *X* ⊆ *G* is *generic* if finitely many translates cover *G*.

From stable group theory: when we have Morley rank, *X* is generic iff dim $X = \dim G$. (False here.) Somewhere between: $\dim(G \setminus X) < \dim G$ and $\dim X = \dim G$. Pathology: $\mathbb{R} = (\infty, 0] \cup [0, \infty)$ the union of two nongeneric sets.

Peterzil-Pillay: not in definably compact groups.

Euler characteristic $\chi(X)$. "Cardinality":

A little topology

Euler characteristic $\chi(X)$. "Cardinality": $\#(0, 1) = \#(0, 2) = 2\#(0, 1) + 1$,

A little topology

Euler characteristic χ(*X*). "Cardinality": $\#(0, 1) = \#(0, 2) = 2\#(0, 1) + 1$ $x = 2x + 1$, $\chi(0, 1) = -1$.

A little topology

Euler characteristic $\chi(X)$. "Cardinality": $\chi(\mathbb{R})=-1, \, \chi(\mathbb{C})=+1, \, \chi(\mathbb{C}^{\times})=0, \, \chi(\mathcal{S}^{1})=0.$

A little topology

Euler characteristic $\chi(X)$. "Cardinality": $\chi(\mathbb{R})=-1, \, \chi(\mathbb{C})=+1, \, \chi(\mathbb{C}^{\times})=0, \, \chi(\mathcal{S}^{1})=0.$ Lagrange: $\chi(G) = \chi(G/H) \cdot \chi(H)$. $x = \pm 1 \implies$ torsion-free

A little topology

Euler characteristic χ(*X*). "Cardinality": $\chi(\mathbb{R})=-1, \, \chi(\mathbb{C})=+1, \, \chi(\mathbb{C}^{\times})=0, \, \chi(\mathcal{S}^{1})=0.$ Lagrange: $\chi(G) = \chi(G/H) \cdot \chi(H)$. $x = \pm 1 \implies$ torsion-free Cauchy: If *p*|χ(*G*) then *G* has an element of order *p*.

A little topology

Euler characteristic χ(*X*). "Cardinality": $\chi(\mathbb{R})=-1,$ $\chi(\mathbb{C})=+1,$ $\chi(\mathbb{C}^{\times})=$ 0, $\chi(\mathcal{S}^{1})=$ 0. Lagrange: $\chi(G) = \chi(G/H) \cdot \chi(H)$. $x = \pm 1 \implies$ torsion-free Cauchy: If *p*|χ(*G*) then *G* has an element of order *p*.

Proof.

Show
$$
p|\chi({a : a^p = 1})
$$
.
\n $X = {(a_1, ..., a_p) : \prod_i a_i = 1}$

$$
\chi(\{a: a^p=1\})=\chi(X\cap \Delta)=\chi(X)-\chi(X\setminus \Delta)
$$

and both terms at the end are divisible by *p*.

A little topology

Euler characteristic χ(*X*). "Cardinality": $\chi(\mathbb{R})=-1, \, \chi(\mathbb{C})=+1, \, \chi(\mathbb{C}^{\times})=0, \, \chi(\mathcal{S}^{1})=0.$ Lagrange: $\chi(G) = \chi(G/H) \cdot \chi(H)$. $x = \pm 1 \implies$ torsion-free Cauchy: If *p*|χ(*G*) then *G* has an element of order *p*.

Cor. No elementary abelian *p*-groups. Proof: By Lagrange $\chi(A) = 0$ so by Cauchy there are elements of all prime orders.

The general group is neither simple nor abelian. How can we climb up a composition series? Hrushovski, Peterzil, Pillay: Groups, measures, and the NIP. Generalized stable group theory.

L Simple Groups of finite Morley rank

1 [Model Theory of](#page-2-0) $\mathbb C$

2 [Geometric Mordell/Lang](#page-12-0)

3 [Pillay's Conjectures](#page-27-0)

4 [Simple Groups of finite Morley rank](#page-49-0)

Simple Groups of finite Morley rank

Algebraicity Conjecture

Conjecture

A simple group of finite Morley rank is algebraic.

Borovik: mine the classification of the finite simple groups.

Algebraicity Conjecture

Borovik: mine the classification of the finite simple groups. This leads to:

Theorem (ABC)

Let G be a simple group of finite Morley rank containing an infinite elementary abelian 2*-subgroup. Then G is algebraic.*

Algebraicity Conjecture

Borovik: mine the classification of the finite simple groups. This leads to:

Theorem (ABC)

Let G be a simple group of finite Morley rank containing an infinite elementary abelian 2*-subgroup. Then G is algebraic.*

Parabolic subgroup: contains *N*(*S*) for *S* a Sylow 2-subgroup. Thin (1 minimal parabolic): strong embedding. Quasi-thin (2 minimal parabolics): amalgam method. Generic type (many minimal parabolics): Niles' theorem. Generation: *C*(*G*, *T*) theorem.

Something more geometric

Theorem (BBC)

A connected group of finite Morley rank containing an involution has an infinite Sylow 2*-subgroup.*

Irreducibility arguments: a connected group of finite Morley rank does not contain two disjoint generic subsets.

Something more geometric

Theorem (BBC)

A connected group of finite Morley rank containing an involution has an infinite Sylow 2*-subgroup.*

Irreducibility arguments: a connected group of finite Morley rank does not contain two disjoint generic subsets.

"Semisimple torsion": Altınel, Burdges, Deloro, Frécon Burdges-Deloro: The Weyl group in a minimal simple group is cyclic.

L Simple Groups of finite Morley rank

Carter Subgroups

Definition: Connected, almost self-normalizing, and nilpotent.

Theorem (Frécon-Jaligot 2005)

Carter subgroups exist.

(via Burdges unipotence theory.)

L Simple Groups of finite Morley rank

Genericity and Generosity

Generous: $\bigcup Q^G$ is generic.

Genericity and Generosity

Generous: $\bigcup Q^G$ is generic.

Theorem (Jaligot 2007)

Any two generous Carter subgoups are conjugate.

Genericity and Generosity

Generous: $\bigcup Q^G$ is generic.

Theorem (Jaligot 2007)

Any two generous Carter subgoups are conjugate.

Lemma

A point belonging to finitely many conjugates of a given Q belongs to a unique one.

Proof.

X: the intersection of the conjugates. *N*(*X*) acts on the set of such conjugates, so $\mathsf{N}^\circ(X)$ normalizes each one; as they are Carters, $N^{\circ}(X)$ is contained in each one, hence in X, and so $X = Q$.

Simple Groups of finite Morley rank

Conjugacy of Carter subgroups

Theorem (Frécon, in press)

Carter subgroups of K[∗] *-groups are conjugate.*

. . . a tour de force

L Simple Groups of finite Morley rank

• One can do a surprising amount of geometry equipped with a rudimentary notion of dimension, particularly when inside a group.

And, this is sometimes useful.