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Homogeneity

A ' B =⇒ A ∼ B under Aut(Γ)

E.g. (Q, <)

. . . in most categories few objects have the Witt property;
those that do are very well behaved indeed.
Michael Aschbacher, The theory of finite groups (1986),
p. 82

Urysohn 1927 (Ph.D. 1921; d. 1924, aged 26): U
Rado 1964: G∞

Berline-Cherlin 1980-1983: QE rings
(cf. Boffa/Macintyre/Point, Baldwin/Rose, Saracino/Wood)
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Amalgamation

Fraı̈ssé 1954: Γ↔ Sub(Γ)
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U

Amalgamation of Metric Spaces

1-point extensions: Ai = A0 ∪ {ui}.
d+(u1,u2) = min(d(u1,a) + d(u2,a))
d−(u1,u2) = max |d(u1,a)− d(u2,a)|
Any positive d in [d−,d+] will do.

U0: The universal homogeneous countable rational-valued
metric space.
U: The completion of U0.
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Homogeneous Graphs and Digraphs

Henson 1971: Gn (Kn-free graph), its automorphisms and
structure
Henson 1972: D¬T (T -free digraph)

Lachlan-Woodrow 1980: Homogeneous graphs classified.
Imprimitive or Degenerate: (mKn)±; Primitive finite: P,
E(K3,3)
Primitive infinite: (Gn)±

Lachlan 1984: Homogeneous tournaments classified
I1,C3,Q,S, T∞
Cherlin 1993 (Banff proceedings): Homogeneous directed
graphs

Tools: Fraı̈ssé, Finite Ramsey theorem
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Some recent developments

Torrezão de Souza/Truss 2008: Colored PO

Color classes c1 ≤ c2 ≤ c1, densely colored; connections
between pairs of color class components; triples. Fraı̈ssé for
existence.

Kechris-Pestov-Todorcevic 2005:
Fraı̈ssé+Ramsey+Top. Dynamics
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Some recent developments

Torrezão de Souza/Truss 2008: Colored PO

Kechris-Pestov-Todorcevic 2005:
Fraı̈ssé+Ramsey+Top. Dynamics

Glasner: “This remarkable paper is a tour de force where
three experts in disparate areas—model theory, structural
Ramsey theory and topological dynamics—collaborate in
creating a unified and beautiful theory.”
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Some recent developments

Kechris-Pestov-Todorcevic 2005:
Fraı̈ssé+Ramsey+Top. Dynamics

Minimal flows: compact actions with every orbit dense.
Extremely amenable: no nontrivial minimal flow
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Some recent developments

Kechris-Pestov-Todorcevic 2005:
Fraı̈ssé+Ramsey+Top. Dynamics

• The extremely amenable closed subgroups of Sym∞ are
exactly the groups of the form Aut(C) with C the Fraı̈ssé
limit of a Fraı̈ssé order class with the Ramsey property.
• If C is one of the following structures, then the universal
minimal flow M(G) of the group G = Aut(C) is its action on
the space of linear orderings of the universe of C0:

Gn (n ≤ ∞);
(N,=);
U0
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Distance homogeneous graphs?

Cameron: classify connected graphs which are
homogeneous as metric spaces in the graph metric.

δ ≤ 2: Lachlan-Woodrow

Γ1 = Γ(v∗): Homogeneous graph
A catalog?
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A catalog

1 δ ≤ 2 (L-W);

2 Locally finite and limits of such
1 Cn (n ≤ ∞)
2 “Doubles” (more generally: antipodal graphs)
3 Tree-like (r -tree of s-cliques: r , s ≤ ∞)

3 Fraı̈ssé type
δ ≤ d ;
Omit (1,d)-subspaces (d ≥ 3);
Omit odd cycles up to order 2K + 1;
Omit triangles of perimeter ≥ C.
Some interactions in these constraints.
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Γ1

Exceptional Γ1 → Exceptional Γ.

Difficulty: Γk

Homogeneous metric space; not necessarily with the graph
metric, because of the parity condition.

But (Γk−1, Γk ) should be.
Extend the classification project?
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Universal Graphs

Komjáth-Mekler-Pach 1988: Universal graphs omitting
paths; or omitting cycles of odd length

Data: Finitely many constraints C (finite, connected
“forbidden” graphs).
Universal countable C-free graph?

? Decidable ?
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Universality and ℵ0-categoricity

Existentially complete C-free graphs.
(Generalizes Fraı̈ssé.)

If the existentially complete countable graph is unique, then
it is universal.
And there is an exact criterion for this in terms of the
algebraic closure.
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L’interdit (Givenchy, 1957)

Our forbidden structures are forbidden in the graph
theorist’s sense, not the model theorist’s (“induced”) sense.

N.B.: if one takes induced substructures then one gets
domino problems if the language is rich enough (maybe not
in graphs??)



Between
model theory

and
combinatorics:
Homogeneity,

WQO,
Universality

Gregory
Cherlin

Homogeneity

Recent
Developments

Universality

Applications

Well
quasi-orders

Algebraic Closure

Forbid C. What is aclC(A)?

• Forbid C4. Then for points u, v at distance 2, the
“midpoint” is a definable function f (u, v). Such points are in
the “definable closure” of u, v .

• Forbid a star Sk . Then for any u, the neighbors of u are
“algebraic” over u: they lie in a u-definable finite set.
(So the algebraic closure of a point is its connected
component.)
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ℵ0-categoricity and algebraic closure

Theorem (CSS 1999)
Let C be a finite set of forbidden graphs, T the theory of the
existentially complete C-free graphs. Then the following are
equivalent.

1 T has a unique countable model
2 The algebraic closure operator is locally finite.

Proof.
=⇒ : General nonsense (Ryll-Nardzewski, Engeler,
Svenonius)
⇐= : Close analysis: over any finite algebraically closed
set, the set of types is finite.
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Applications: Cycles . . .

Conjectured by Menachem Kojman:

Theorem
If C is closed under homomorphism (i.e., the image of a
constraint in C under graph homomorphism is C-forbidden)
then acl is degenerate and there is a universal C-free graph.

Example. Odd cycles.
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Applications: Cycles . . .

Conjectured by Menachem Kojman:

Theorem
If C is closed under homomorphism (i.e., the image of a
constraint in C under graph homomorphism is C-forbidden)
then acl is degenerate and there is a universal C-free graph.

Example. Odd cycles.

Theorem (Cherlin-Shi 1996)
For C a finite set of cycles the following are equivalent.

1 There is a universal C-free graph.
2 C consists of all odd cycles up to a fixed length.
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. . . and trees

Theorem (Cherlin-Shelah 2007)

For C = {T} a single tree, the following are equivalent.
1 There is a universal C-free graph.
2 The tree T is an extension of a path by at most one

additional edge.

(⇐= : Cherlin-Tallgren 2007, based on KMP)
=⇒ :

Shelah’s idea: Pruning

To prune a tree T : T ′ is obtained by removing all leaves.
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Pruning Trees

Lemma
If there is a T -free universal graph G then there is a
T ′-universal graph G∗, consisting of the vertices of G of
infinite degree.

Minimal trees: those which prune to a path or near-path.

(15 cases).
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General Pruning

In general: Remove a minimal block-leaf. (Or a
downward-closed family.)

Conjectures

Conjecture
If there is C-free universal graph, then C has complete
blocks and a path-like structure, with very few exceptions.

Conjecture
For a single connected constraint C, the problem of
determining whether there is a universal C-free graph is
algorithmically decidable.
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A Concrete Example

The Bouquet K5 ∧ K5

(Algebraic closure running along the mid-line)
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The Hairy Ball Graph

• The Hairy Ball Problem Let K be a finite graph consisting
of a complete graph together with a single finite path
attached to each vertex. Is there a universal K -free graph?

Equivalently: if one strings together an infinite series of
“canonical obstructions” (K minus part of one path) along a
2-way infinite path, does the graph K necessarily appear?
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WQO

Well-founded: no descending chains.
WQO: no descending chains or infinite antichains.

Classes of finite structures ordered by embedding (in either
of the two common senses) are well-founded, but not in
general WQO.

Robertson-Seymour: Finite graphs under “graph minor” are
WQO.

Friedman: this is (formally speaking) not easy to
prove—that is, it requires impredicative methods.
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A dichotomy?

Q: our favorite quasi-order (e.g., all finite tournaments)
C ⊆ Q finite (constraints, “forbidden” points)
QC : C-free elements—¬∃c ∈ C(x ≥ c)

Problem: Is QC WQO?

Meta-Problem: Can you tell?

Thesis: This is a dichotomy only if one can decide
algorithmically which case one is in.
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An Example (Friedman)

For L a linear order, let LWO be the largest initial segment of
L which is well ordered.
Let <1 be a recursive ordering of N so that (N, <)WO is
complete Π1

1.
Let Q∗ be the quasiorder of N defined by

m ≤∗ n ⇐⇒ (m ≤ n&m ≤1 n)

Then:
Q∗ is well-founded;
for m ∈ Q∗, Q∗m is wqo iff the initial segment determined
by m in (N, <1) is well ordered.

Corollary
In the effectively given quasiorder Q∗, recognizing those
constraints c which correspond to wqo ideals is as difficult
as it could possibly be.
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Failures of WQO: Examples

Paths with colored vertices:

Tournaments: Permutations:

These are minimal antichains: Q<I is wqo

Lemma
Below any antichain there is a minimal antichain.

(Minimal bad sequence argument)

These antichains are also isolated: there is a finite set of
constraints C such these are the only antichains in QC , up to
equivalence. (I.e., up to Q<I = Q<J .)
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Isolated antichains

Density Hypothesis: The isolated minimal antichains are
dense (any non-wqo QC contains an isolated antichain).

Examples:
Graphs
Colored Paths

Corollary
In the cases of graphs and colored paths, the isolated
minimal antichains are dense, the associated ideals are
effectively recognizable, and the recognition of wqo classes
given by finitely many constraints is effective, in polynomial
time.



Between
model theory

and
combinatorics:
Homogeneity,

WQO,
Universality

Gregory
Cherlin

Homogeneity

Recent
Developments

Universality

Applications

Well
quasi-orders

Isolated antichains

Density Hypothesis: The isolated minimal antichains are
dense (any non-wqo QC contains an isolated antichain).
Examples:

Graphs
Colored Paths

Corollary
In the cases of graphs and colored paths, the isolated
minimal antichains are dense, the associated ideals are
effectively recognizable, and the recognition of wqo classes
given by finitely many constraints is effective, in polynomial
time.



Between
model theory

and
combinatorics:
Homogeneity,

WQO,
Universality

Gregory
Cherlin

Homogeneity

Recent
Developments

Universality

Applications

Well
quasi-orders

Isolated antichains

Density Hypothesis: The isolated minimal antichains are
dense (any non-wqo QC contains an isolated antichain).
Examples:

Graphs
Colored Paths

Corollary
In the cases of graphs and colored paths, the isolated
minimal antichains are dense, the associated ideals are
effectively recognizable, and the recognition of wqo classes
given by finitely many constraints is effective, in polynomial
time.



Between
model theory

and
combinatorics:
Homogeneity,

WQO,
Universality

Gregory
Cherlin

Homogeneity

Recent
Developments

Universality

Applications

Well
quasi-orders

Isolated antichains

Density Hypothesis: The isolated minimal antichains are
dense (any non-wqo QC contains an isolated antichain).
Examples:

Graphs Just 2 minimal antichains
I0: Cycles (degree at most 2—unique isolated)

I1: Bridges: (not isolated)

Colored Paths

Corollary
In the cases of graphs and colored paths, the isolated
minimal antichains are dense, the associated ideals are
effectively recognizable, and the recognition of wqo classes
given by finitely many constraints is effective, in polynomial
time.



Between
model theory

and
combinatorics:
Homogeneity,

WQO,
Universality

Gregory
Cherlin

Homogeneity

Recent
Developments

Universality

Applications

Well
quasi-orders

Isolated antichains

Density Hypothesis: The isolated minimal antichains are
dense (any non-wqo QC contains an isolated antichain).
Examples:

Graphs Just 2 minimal antichains
I0: Cycles (degree at most 2—unique isolated)

I1: Bridges: (not isolated)

Colored Paths

Proposition
Among vertex-colored paths, the minimal antichains are
quasi-periodic, that is they consist of a periodic part
augmented by a first and last vertex which break the
periodicity.

Corollary
In the cases of graphs and colored paths, the isolated
minimal antichains are dense, the associated ideals are
effectively recognizable, and the recognition of wqo classes
given by finitely many constraints is effective, in polynomial
time.
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A finiteness Theorem

Theorem (Cherlin-Latka 2000)
Let Q be a wellfounded quasiorder. Then for each k, there
is a finite set Λk of minimal antichains, such that any
non-wqo QC with |C| ≤ k allows one of the antichains in Λk
(up to a finite set).

Corollary

If the ideals Q<I are computable for I ∈ Λk , then the
decision problem for wqo with respect to k + 1 constraints is
decidable.
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A finiteness Theorem

Theorem (Cherlin-Latka 2000)
Let Q be a wellfounded quasiorder. Then for each k, there
is a finite set Λk of minimal antichains, such that any
non-wqo QC with |C| ≤ k allows one of the antichains in Λk
(up to a finite set).

Proof.
Induction. Start with Λk+1 = Λk and consider constraints
C = {c1, . . . , ck+1} for which this is inadequate.
Ci = C \ {ci}. If QCi is wqo, no worries.

Suppose some I ∈ Λk is compatible with QCi . If I is
compatible with ci , no worries.
Remaining case: ci ∈ Q<Ii , Ii ∈ Λk .
C ∈

∏
i Q<Ii a wqo. So there are finitely many minimal

cases; expand Λk by witnesses for the minimal cases.

Corollary

If the ideals Q<I are computable for I ∈ Λk , then the
decision problem for wqo with respect to k + 1 constraints is
decidable.
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Friedman again

Claims:
1 The finiteness theorem for k = 1 is provably equivalent

to Π111 − CA0 over RCA0, even for locally finite
quasiorders.

2 There is a finite signature with just constant and
function symbols, such that model theoretic
embeddability of finite structures gives a quasiorder for
which the set of forbidden points defining a wqo ideal is
complete Π1

1.

At what the other extreme we may conjecture:

Conjecture
The isolated minimal antichains are dense for Q the
quasiorder of tournaments, and the corresponding ideals
are uniformly recursive.
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A final question

Old chestnut:

• Is the generic triangle-free graph G3 pseudofinite (i.e., are
its properties shared by finite graphs)?

Or in its more ambitious form: can we tell when a
homogeneous structure is pseudofinite?

. . . and best wishes to Chantal Berline, and for the fruitful
interaction of model theory, combinatorics, and computer
science . . .
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