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Theorem

Theorem (with Borovik)

If G is an algebraic group acting rationally, faithfully, and
primitively on a variety X then the dimension of G can be
bounded in terms of the dimension of X .

(Proved more broadly in the category of groups of finite Morley
rank.)
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Groups of Finite Morley rank

Morley rank

rk = dim: DEF(Gn) → N.
Examples: Algebraic groups; differentially algebraic groups;
compact complex groups.

Diophantine applications: Abelian varieties, Manin kernel.
Typically: abelian groups.

Conjecture

A simple group of finite Morley rank is algebraic.
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2-Tori

Theorem (Dichotomy)

Let G be a simple group of finite Morley rank containing an
involution. Then one of the following holds.

G is a simple algebraic group.
G contains a nontrivial 2-torus.

Theorem (BBC: Nondegeneracy)

Let G be a connected group of finite Morley rank containing an
involution. Then G contains an infinite 2-subgroup.
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Characteristic 2 type

Theorem (ABC: Char 2 case)

G simple, finite Morley rank, with an infinite 2-group of bounded
exponent. Then G is algebraic.

Finite simple group theory:

1st generation: 15000 pages (condensed)
2nd generation: 5000 pages (in progress)
Finite Morley rank: 300 pages.

In finite group theory, the torus F∗2 reduces to a single element.
This breaks “generic” arguments.

Sporadic groups are only one manifestation of this.

Wagner: in the multiplicative group of a field of finite Morley
rank, in positive characteristic, torsion is dense (rigidity).
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Nondegeneracy

Theorem (BBC: Nondegeneracy)

Let G be a connected group of finite Morley rank containing an
involution. Then G contains an infinite 2-subgroup.

In a minimal counterexample, each involution i lies outside
C◦(i). In particular C(i) is disconnected.

“Black Box group theory” . . .
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Dihedral groups

Let I be a conjugacy class of involutions and consider the
structure of

d(ij) : i , j ∈ I × I

Either d(ij) contains a unique involution k (commuting with i
and j) or i , j are conjugate under the action of d(ij).
Furthermore one of these two possibilities holds generically.
So the argument splits to two cases.
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Case I: d(ij) contains no involution

j = ig = ix with x ∈ d(ij).

ζ(g) = gx−1 ∈ gd(ij) ∩ C(i).

Covariant generically defined map ζ : G → C(i)
(ζ(cg) = cζ(g)).

Conclusion:
Fiber ranks of ζ over points of C(i) are constant;
deg(G) ≥ deg(C(i))

Hence G connected implies C(i) connected.
We use a generically defined covariant map to transfer coarse
structure between G and C(i).
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Black Box Group Theory

G large finite. Choose elements independently with a uniform
distribution and perform various operations or measurements
on them (compute orders, multiply, . . . ).
Allowable operations vary.

Problem: analyze G—is it simple? and if so, what group is it?

Determine Op(G) in characteristic p.

Using centralizers of involutions (p odd).

Question: If G is a black box group, is C(i) a black box group?
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Is C(i) a black box group?

In the favorable case ζ : G → C(i) generically, ζ(g) picks
elements of C(i) randomly.

The uniform measure on G is carried to the uniform measure
on C(i).
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Main Theorem

Theorem (Borovik/Cherlin)

If G is a group of finite Morley rank acting definably, faithfully,
and primitively on a set X then the rank of G can be bounded in
terms of the rank of X .
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Imprimitive Example

T = K× acting on V via (t ivi), W ≤ V hyperplane in general
position.

Ĝ = V o T acting on the coset space X = W\Ĝ (faithfully).

rk (X ) = 2, rk (Ĝ) = dim(V ) + 1.
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Generic Multiple Transitivity

X (t): t-tuples of distinct elements.

t-transitive: transitive on X (t)

Generically transitive: one large orbit Ω on X , i.e.

rk (X \ Ω) < rk (X )

Generically t-transitive: generically transitive on X t .

rk (G) ≥ t · rk (X )

If we wish to bound rk (G) we must bound t . Conversely, in the
primitive case, this is enough.
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Not fully classified, even for actions of algebraic groups (Popov
in char. 0).
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Bounds on t

(G, X ) finite Morley rank, r = rk (X ) (fixed)

t(G, X ) = sup(t : G generically t-transitive)

τ(r): sup t(G, X ) i.e. the degree of generic multiple transitivity,
with (G, X ) definably primitive.
τS(r): sup t(G, X ) i.e. the degree of generic multiple transitivity,
with (G, X ) definably primitive and simple.

Reduction to the simple case via Macpherson-Pillay form of
O’Nan-Scott-Aschbacher.
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Key Lemma

Lemma

T the definable closure of p-torus, acting faithfully on X. Then
rk (T/O0(T )) ≤ rk (X ).
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Bounds on t(G)

G simple, generically highly transitive on X .

G contains involutions.

G is algebraic or contains a nontrivial 2-torus T .

G algebraic: T maximal p-torus, Lie rank of G bounded by
rk (X ), done.

G contains a nontrivial 2-torus T : persuade Symt to act on T
nontrivially and show that rk (T ) controls t .

Ingredient: Every involution belongs to some 2-torus (cf. torality
theorem, Burdges-Cherlin).
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Better bounds?

r = 1; t ≤ 3;
r = 2; t ≤ 27.

Conjecture

t ≤ r + 2

Known in characteristic 0 with rational actions.
Not known in characteristic p with rational actions or in
characteristic 0 with definable actions.
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Conclusion

Though we do not have an explicit classification of the simple
groups of finite Morley rank, we can apply the theory as it
stands in much the way that we would apply a full classification.

Another “old chestnut”:

Theorem

If G is connected and satisfies the following equation
generically:

x2n
= 1

then indeed G is a 2-group of exponent at most 2n.

Again, this seems to need the classification theory, in spite of
its apparently elementary character.
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