Gregory Cherlin

21 mai, Lyon – ICJ

Permutation group: (G, X)Morley rank: rk(X) (notion of dimension, for X definable)

Permutation group: (G, X)Morley rank: rk(X) (notion of dimension, for X definable)

Theorem (with Borovik)

The rank of G can be bounded in terms of the rank of X, if the action of G is faithful and definably primitive.

Permutation group: (G, X)Morley rank: rk(X) (notion of dimension, for X definable)

Theorem (with Borovik)

The rank of G can be bounded in terms of the rank of X, if the action of G is faithful and definably primitive.

Method: structure theory for simple groups of finite Morley rank.

I. Definably primitive groups

1 I. Definably primitive groups

2 II. Bounds

- 3 III. From $\rho_{\rm S}$ to τ
- 4 IV. Structure Theory

I. Definably primitive groups

Primitive: no nontrivial invariant equivalence relation on X. Definably primitive: no nontrivial definable invariant equivalence relation on X. - I. Definably primitive groups

Primitive: no nontrivial invariant equivalence relation on X. Definably primitive: no nontrivial definable invariant equivalence relation on X.

As it happens, these notions are equivalent except when the point stabilizer G_{α} is finite.

- I. Definably primitive groups

Primitive: no nontrivial invariant equivalence relation on X. Definably primitive: no nontrivial definable invariant equivalence relation on X.

Group-theoretically: $G_{\alpha} < G$ maximal, or definably maximal.

I. Definably primitive groups

Examples

Intransitive [Gropp] Ingredients: field K, vector space V, 1-dim space L, and maps

 $\lambda: V \twoheadrightarrow L$ linear; $f: L \to V$ space curve

I. Definably primitive groups

Examples

Intransitive [Gropp] Ingredients: field K, vector space V, 1-dim space L, and maps

 $\lambda: V \twoheadrightarrow L$ linear; $f: L \to V$ space curve

 $E_V = End(V)$ acts on L^2 via $A.(x, y) = (x, y + \lambda(A.f(x)))$

- I. Definably primitive groups

Examples

Intransitive [Gropp] Ingredients: field K, vector space V, 1-dim space L, and maps

 $\lambda: V \twoheadrightarrow L$ linear; $f: L \to V$ space curve

 $E_V = End(V)$ acts on L^2 via $A.(x, y) = (x, y + \lambda(A.f(x)))$

Faithful action on a rank 2 set of unbounded rank. Orbits: $L_x = \{x\} \times L$. Kernel of the induced action:

 $A.v \in \ker \lambda$ (v = f(x))

Varying with x.

I. Definably primitive groups

Examples

Intransitive [Gropp] $E_V = End(V)$ acts on L² via A.(x, y) = (x, y + λ (A.f(x)))

Faithful action on a rank 2 set of unbounded rank.

Imprimitive

G algebraic acting on V, $W \leq V$ containing no G-invariant subspace. $\hat{G} = V \rtimes G$ acting on the coset space $W \setminus \hat{G}$. We want: G fixed, dim(V/W) fixed, dim $(V) \rightarrow \infty$.

- G simple, V irreducible, W a hyperplane.
- G a torus, all eigenspaces 1-dimensional, W avoids them.

I. Definably primitive groups

Generic Multiple Transitivity

 $X^{(t)}$: t-tuples of *distinct* elements. t-transitive: transitive on $X^{(t)}$

- I. Definably primitive groups

Generic Multiple Transitivity

 $X^{(t)}$: t-tuples of *distinct* elements. t-transitive: transitive on $X^{(t)}$ Generically transitive: one large orbit Ω on X, i.e.

 $rk\left(X\setminus \Omega \right) < rk\left(X\right)$

Generically t-transitive: generically transitive on X^t.

- I. Definably primitive groups

Generic Multiple Transitivity

 $X^{(t)}$: t-tuples of *distinct* elements. t-transitive: transitive on $X^{(t)}$ Generically transitive: one large orbit Ω on X, i.e.

 $rk\left(X\setminus \Omega \right) < rk\left(X\right)$

Generically t-transitive: generically transitive on X^t.

Not fully classified, even for actions of algebraic groups (Popov).

1 I. Definably primitive groups

2 II. Bounds

- 3 III. From $\rho_{\rm S}$ to τ
- 4 IV. Structure Theory

Bounds

(G, X) finite Morley rank, r = rk(X) (fixed)

 $\rho(r)$: sup(rk(G)) with (G, X) definably primitive.

Bounds

(G, X) finite Morley rank, r = rk(X) (fixed)

 $\rho(r)$: sup(rk(G)) with (G, X) definably primitive. $\tau(r)$: supt(G, X) i.e. the degree of generic multiple transitivity, with (G, X) definably primitive.

Bounds

(G, X) finite Morley rank, r = rk(X) (fixed)

 $\rho(r)$: sup(rk(G)) with (G, X) definably primitive.

 $\tau(r)$: sup t(G, X) i.e. the degree of generic multiple transitivity, with (G, X) definably primitive.

 $\rho_S(r)$: sup(rk (G)) with r fixed, G simple, acting faithfully on X. $\tau_S(r)$: sup t(G, X) i.e. the degree of generic multiple transitivity, with (G, X) definably primitive and simple.

Bounds

(G, X) finite Morley rank, r = rk(X) (fixed)

 $\rho(r)$: sup(rk(G)) with (G, X) definably primitive.

 $\tau(r)$: sup t(G, X) i.e. the degree of generic multiple transitivity, with (G, X) definably primitive.

 $\rho_S(r)$: sup(rk (G)) with r fixed, G simple, acting faithfully on X. $\tau_S(r)$: sup t(G, X) i.e. the degree of generic multiple transitivity, with (G, X) definably primitive and simple.

Theorem

All of these are bounded in terms of rk(X).

Bounds

Ranks of:

- Simple groups acting transitively;
- Generically highly transitive definably primitive (or simple) groups;
- Definably primitive groups.

Theorem

All of these are bounded in terms of rk(X).

Strategy: Definably primitive \rightarrow generically highly transitive \rightarrow simple transitive \rightarrow simple highly transitive \rightarrow structure theory.

From τ to ρ or τ_S to ρ_S

ρ : rk (G); τ : degree of generic transitivity

Proposition

$$\mathbf{r} \cdot \mathbf{\tau}(\mathbf{r}) \leq
ho(\mathbf{r}) \leq \mathbf{r}\mathbf{\tau}(\mathbf{r}) + {r \choose 2}.$$

Remark: For transitive groups $rk(G) \ge rk(X)$ and so $\rho \ge r \cdot \tau$.

From au to ρ (cont.)

 o_k : the *generic rank* of an orbit with *k*-independent elements fixed ...

 $\alpha = (\alpha_1, \dots, \alpha_k)$ generic and independent

$$\{x\in X: \mathit{rk}\,({x^{{G_{lpha}}^{\circ}}})=o_k\}$$
 generic in X

From au to ρ (cont.)

 o_k : the *generic rank* of an orbit with *k*-independent elements fixed ...

Lemma

If $0 < o_k < rk(X)$ then $o_{k+1} < o_k$.

In short order $o_k = 0$, G_{α}° acts generically trivially, and G_{α} is finite.

From τ to ρ (cont.)

 o_k : the *generic rank* of an orbit with *k*-independent elements fixed . . .

Lemma

If $0 < o_k < rk(X)$ then $o_{k+1} < o_k$.

Idea: $o_{k+1} = o_k$ means orbits are generically unaffected by fixing an independent point; this reveals a *G*-invariant definable equivalence relation, whose classes are approximately these orbits.

1 I. Definably primitive groups

2 II. Bounds

3 III. From ρ_S to τ

4 IV. Structure Theory

MP-OSA

G generically highly transitive and definably primitive. The objective is to reduce to the simple case. Finite group theory: O'Nan-Scott-Aschbacher (OSA) Finite Morley rank: Macpherson-Pillay (MP-OSA) Definable Socle: the group generated by minimal definable normal subgroups.

MP-OSA

G generically highly transitive and definably primitive. The objective is to reduce to the simple case.

Theorem (MP-OSA, preamble)

(G, X) definably primitive with socle B. Two cases:

- Affine case: B abelian, G = B × G_α. The action of G on X corresponds to the action of G on B by translation and conjugation. B is G_α-minimal.
- Else B = T₁ ×··· T_k is a product of isomorphic simple groups.

Simple groups are at least in view here. To bring them onto the scene as the central characters takes some more analysis.

Affine groups

 $G = A \rtimes H$ (*H* acts on *A*). Use rk(A) to control rk(H), (*A H*-minimal, i.e. *G* definably primitive).

Theorem

Let (H, A) be as stated and r = rk(A). Then one of the following holds.

- A is torsion free, divisible: then $rk(H) \le r^2$
- A is elementary abelian: in this case, if every definable simple nonabelian subgroup of H has rank at most s, then

 $rk(H) \leq max(r^2, r(s^2 + s))$

Affine groups

Theorem

Let (H, A) be as stated and r = rk(A). Then one of the following holds.

- A is torsion free, divisible: then $rk(H) \le r^2$
- A is elementary abelian: in this case, if every definable simple nonabelian subgroup of H has rank at most s, then

$$rk(H) \leq \max(r^2, r(s^2 + s))$$

The bound r^2 corresponds to the linear case: *r* being the "dimension" of the "space" on which *H* acts. The proof reflects this idea.

Affine groups

Theorem

Let (H, A) be as stated and r = rk(A). Then one of the following holds.

• A is torsion free, divisible: then $rk(H) \le r^2$

...

If *A* is *torsion free* then *A* is pointwise definable from a sequence of at most *r* elements $a = (a_1, ..., a_n)$ and therefore $G_a = 1$, $rk(G) \le nr \le r^2$.

Affine groups

Theorem

Let (H, A) be as stated and r = rk(A). Then one of the following holds.

...

A is elementary abelian: in this case, if every definable simple nonabelian subgroup of H has rank at most s, then

$$rk(H) \leq max(r^2, r(s^2 + s))$$

The case *A elementary abelian* takes more machinery, notably Wagner's results on fields of finite Morley rank.

Nonabelian socles

(G, X) definably primitive with nonabelian definable socle, and r = rk(X).

Lemma

If G has more than one minimal normal definable subgroup, then $rk(G) \le r^2 + 2r$.

(Quite similar to the case of divisible abelian socle in fact.)

More MP-OSA

The other case:

Notation

L is the unique minimal normal definable subgroup of *G*; $L = \prod L_i$ with L_i isomorphic simple groups.

More MP-OSA

The other case:

Notation

L is the unique minimal normal definable subgroup of *G*; $L = \prod L_i$ with L_i isomorphic simple groups.

There are two possibilities:

(a) The point stabilizer is L_α = ∏_i(L_i)_α;
(b) L = ∏ L_I with each L_I a product of k simple factors L_i (i ∈ I), k ≥ 2, and (L_I)_α a diagonal subgroup.

LIII. From ρ_S to τ

More MP-OSA

There are two possibilities:

(a) The point stabilizer is $L_{\alpha} = \prod_{i} (L_{i})_{\alpha}$;

(b) $L = \prod L_l$ with each L_l a product of k simple factors L_i $(i \in I), k \ge 2$, and $(L_l)_{\alpha}$ a diagonal subgroup.

Lemma

Correspondingly, with $s = rk(L_i)$, we have (a) $rk(G) \le r(s + s^2)$; (b) $rk(G) \le 2(r^2 + r)$.

What is wanted is a bound on s.

1 I. Definably primitive groups

2 II. Bounds

3 III. From ρ_S to τ

4 IV. Structure Theory

Actions primitives de groupes avec dimension en théorie des modèles

- IV. Structure Theory

Involutions

A generically *t*-transitive group, with $t \ge 2$ contains an element of order 2.

Theorem (Classification)

Let G be a simple group of finite Morley rank containing an involution. Then one of the following holds.

- G is a simple algebraic group.
- G contains a nontrivial 2-torus.

2-*torus:* Divisible abelian 2-group. So much for structure theory. Actions primitives de groupes avec dimension en théorie des modèles

- IV. Structure Theory

Involutions

Theorem (Classification)

Let G be a simple group of finite Morley rank containing an involution. Then one of the following holds.

- G is a simple algebraic group.
- G contains a nontrivial 2-torus.

The rest of our strategy comes down to *control of p-tori*. Objectives:

- Bound the ranks of *p*-tori above in terms of *r*;
- Bound the ranks of *p*-tori below in terms of *t*.

Actions of *p*-tori

Lemma

Let (G, Ω) be a definably primitive permutation group of finite Morley rank, T a definable divisible abelian abelian subgroup, and O(T) its largest definable torsion free subgroup. Then

 $\mathit{rk}\left(\mathit{T}/\mathit{O}(\mathit{T})
ight)\leq \mathit{rk}\left(\mathit{X}
ight)$

Actions of *p*-tori

Lemma

Let (G, Ω) be a definably primitive permutation group of finite Morley rank, T a definable divisible abelian abelian subgroup, and O(T) its largest definable torsion free subgroup. Then $rk(T/O(T)) \leq rk(X)$

Proof.

 T_0 be the torsion subgroup of T. Let $\alpha \in X$ be generic over T_0 . Then $T_{\alpha} \cap T_0 = 1$.

Actions of *p*-tori

Lemma

Let (G, Ω) be a definably primitive permutation group of finite Morley rank, T a definable divisible abelian abelian subgroup, and O(T) its largest definable torsion free subgroup. Then $rk(T/O(T)) \leq rk(X)$

Proof.

 T_0 be the torsion subgroup of T. Let $\alpha \in X$ be generic over T_0 . Then $T_{\alpha} \cap T_0 = 1$. So $T_{\alpha} \leq O(T)$ and

$$\mathit{rk}\left(\mathit{T}/\mathit{O}(\mathit{T})
ight) \leq \mathit{rk}\left(\mathit{T}/\mathit{T}_{\alpha}
ight) = \mathit{rk}\left(\alpha^{\mathit{T}}
ight) \leq \mathit{rk}\left(\mathit{X}
ight)$$

Actions of *p*-tori

Lemma

Let (G, Ω) be a definably primitive permutation group of finite Morley rank, T a definable divisible abelian abelian subgroup, and O(T) its largest definable torsion free subgroup. Then $rk(T/O(T)) \leq rk(X)$

In particular if *G* is algebraic and *T* is a maximal torus, its algebraic dimension is bounded by rk(X), after which the classification of simple algebraic groups suffices.

Sporadic groups?

Key case: a generically highly transitive simple group *G* with a nontrivial 2-torus of bounded Morley rank. So what?

Sporadic groups?

Key case: a generically highly transitive simple group *G* with a nontrivial 2-torus of bounded Morley rank. So what?

If *G* is generically *t*-transitive and $\alpha = (x_1, \ldots, x_t)$ is a sequence of generic and independent elements of *X*, then *G* induces the action of *Sym*_t on this set.

Sporadic groups?

Key case: a generically highly transitive simple group G with a nontrivial 2-torus of bounded Morley rank. So what?

Better:

If *G* is generically 2*t*-transitive then G_{α} is generically *t*-transitive and $N(G_{\alpha})$ induces the action of Sym_t on these elements.

Sporadic groups?

Key case: a generically highly transitive simple group G with a nontrivial 2-torus of bounded Morley rank. So what?

Simplify: imagine Sym_t acting on G_{α} ; even better, on a maximal 2-torus T of G_{α} . From there one would expect to *pump up* the rank of T, so bounding the rank of T above would finally control t!

A little too enthusiastic ...?

A maximal 2-torus

(G, X) highly generically transitive. Imagine: *H* a connected definable subgroup, also pretty highly generically transitive.

$$\alpha = (\mathbf{x}_1, \ldots, \mathbf{x}_n)$$

a *long* sequence of generic independent points. *T* a maximal 2-torus of H_{α} . And Σ , some finite group resembling Sym_n , acting on *T*.

A maximal 2-torus

(G, X) highly generically transitive. Imagine: *H* a connected definable subgroup, also pretty highly generically transitive.

 $\alpha = (\mathbf{x}_1, \ldots, \mathbf{x}_n)$

a *long* sequence of generic independent points. *T* a maximal 2-torus of H_{α} . And Σ , some finite group resembling Sym_n , acting on *T*.

We have a bound on rk(T/O(T)), namely rk(X). If Σ acts faithfully, then yes, we can pump up rk(T/O(T)) in terms of *n* i.e. bound *n* in terms of rk(X)—and be done.

A maximal 2-torus

(G, X) highly generically transitive. Imagine: *H* a connected definable subgroup, also pretty highly generically transitive.

 $\alpha = (x_1, \ldots, x_n)$

a *long* sequence of generic independent points. *T* a maximal 2-torus of H_{α} . And Σ , some finite group resembling Sym_n , acting on *T*.

We have a bound on rk(T/O(T)), namely rk(X). If Σ acts faithfully, then yes, we can pump up rk(T/O(T)) in terms of *n* i.e. bound *n* in terms of rk(X)—and be done. But what if Σ acts trivially?

A maximal 2-torus

(G, X) highly generically transitive. Imagine: *H* a connected definable subgroup, also pretty highly generically transitive.

 $\alpha = (x_1, \ldots, x_n)$

a *long* sequence of generic independent points. *T* a maximal 2-torus of H_{α} . And Σ , some finite group resembling Sym_n , acting on *T*.

We have a bound on rk(T/O(T)), namely rk(X). If Σ acts faithfully, then yes, we can pump up rk(T/O(T)) in terms of *n* i.e. bound *n* in terms of rk(X)—and be done. But what if Σ acts trivially? Oops!

A very maximal 2-torus

Lemma

Let H be simple of finite Morley rank, T a maximal 2-torus (nontrivial). Then T contains all the 2-elements in C(T).

A very maximal 2-torus

Lemma

Let H be simple of finite Morley rank, T a maximal 2-torus (nontrivial). Then T contains all the 2-elements in C(T).

Lemma

(G, X) simple, generically highly transitive, r = rk(X). Then for any k there is a connected subgroup H of G with

$$rk(G) - rk(H) \leq (kr+1)r$$

so that the point stabilizer H_{α} contains a maximal 2-torus of H (α an independent generic sequence of length k).

A very maximal 2-torus

Lemma

Let H be simple of finite Morley rank, T a maximal 2-torus (nontrivial). Then T contains all the 2-elements in C(T).

Lemma

(G, X) simple, generically highly transitive, r = rk(X). Then for any k there is a connected subgroup H of G with

$$rk(G) - rk(H) \leq (kr+1)r$$

so that the point stabilizer H_{α} contains a maximal 2-torus of H (α an independent generic sequence of length k).

These two together give a *faithful* action of " Sym_k ".

A very maximal 2-torus

Lemma

Let H be simple of finite Morley rank, T a maximal 2-torus (nontrivial). Then T contains all the 2-elements in C(T).

Lemma

(G, X) simple, generically highly transitive, r = rk(X). Then for any k there is a connected subgroup H of G with

$$rk(G) - rk(H) \leq (kr+1)r$$

so that the point stabilizer H_{α} contains a maximal 2-torus of H (α an independent generic sequence of length k).

So rk(T/O(T)) grows with t (linearly) and is bounded by r. (Done)

Many problems

The bounds are weak. $r = 0: \rho = 0$ $r = 1: \rho = 3, \tau = 3$ (Hrushovski)

Many problems

The bounds are weak.

 $r = 0: \rho = 0$ $r = 1: \rho = 3, \tau = 3$ (Hrushovski) $r = 2: \tau \le 27$. Gropp: sharp generic transitivity ≤ 6 .

Many problems

The bounds are weak.

 $r = 0: \rho = 0$ $r = 1: \rho = 3, \tau = 3$ (Hrushovski) $r = 2: \tau \le 27$. Gropp: sharp generic transitivity ≤ 6 .

Problem (Borovik)

Let G be connected, acting transitively and generically (n+2)-transitively on a set of Morley rank n. Then G is the projective group acting on projective space over an algebraically closed field.

(For 18 more or less related problems, see *Permutation groups of finite Morley rank*, Newton Proceedings Volume, to appear.)