Actions primitives de groupes avec dimension en théorie des modèles

Gregory Cherlin

21 mai, Lyon – ICJ

Reduction of a theorem of permutation group theory to the simple case, and solution by "structure theory."

Contents

Reduction of a theorem of permutation group theory to the simple case, and solution by "structure theory."

Permutation group: (G, X) Morley rank: $rk(X)$ (notion of dimension, for X definable)

Reduction of a theorem of permutation group theory to the simple case, and solution by "structure theory."

Permutation group: (G, X) Morley rank: $rk(X)$ (notion of dimension, for X definable)

Theorem (with Borovik)

The rank of G *can be bounded in terms of the rank of* X*, if the action of* G *is faithful and definably primitive.*

Reduction of a theorem of permutation group theory to the simple case, and solution by "structure theory."

Permutation group: (G, X) Morley rank: $rk(X)$ (notion of dimension, for X definable)

Theorem (with Borovik)

The rank of G *can be bounded in terms of the rank of* X*, if the action of* G *is faithful and definably primitive.*

Method: structure theory for *simple* groups of finite Morley rank.

L. Definably primitive groups

1 I. Definably primitive groups

II. Bounds

3 III. From ρ_S to τ

4 IV. Structure Theory

 \Box I. Definably primitive groups

Primitive: no nontrivial invariant equivalence relation on X. Definably primitive: no nontrivial definable invariant equivalence relation on X.

 $\overline{}$ I. Definably primitive groups

Primitive: no nontrivial invariant equivalence relation on X. Definably primitive: no nontrivial definable invariant equivalence relation on X.

As it happens, these notions are equivalent except when the point stabilizer G_{α} is finite.

 $\overline{}$ I. Definably primitive groups

Primitive: no nontrivial invariant equivalence relation on X. Definably primitive: no nontrivial definable invariant equivalence relation on X.

Group-theoretically: $G_0 < G$ maximal, or definably maximal.

 \Box I. Definably primitive groups

Examples

Intransitive [Gropp] Ingredients: field K, vector space V, 1-dim space L, and maps

 $\lambda : V \rightarrow L$ linear; f : L $\rightarrow V$ space curve

 \Box I. Definably primitive groups

Examples

Intransitive [Gropp] Ingredients: field K, vector space V, 1-dim space L, and maps $\lambda : V \rightarrow L$ linear; f : L $\rightarrow V$ space curve

 $\mathrm{E}_{\mathrm{V}}=\mathrm{End}(\mathrm{V})$ acts on L^2 via $\mathrm{A}.(\mathrm{x},\mathrm{y})=(\mathrm{x},\mathrm{y}+\lambda(\mathrm{A}. \mathrm{f}(\mathrm{x})))$

 $\overline{}$ I. Definably primitive groups

Examples

Intransitive [Gropp] Ingredients: field K, vector space V, 1-dim space L, and maps $\lambda : V \rightarrow L$ linear: f : L $\rightarrow V$ space curve

 $\mathrm{E}_{\mathrm{V}}=\mathrm{End}(\mathrm{V})$ acts on L^2 via $\mathrm{A}.(\mathrm{x},\mathrm{y})=(\mathrm{x},\mathrm{y}+\lambda(\mathrm{A}. \mathrm{f}(\mathrm{x})))$

Faithful action on a rank 2 set of unbounded rank. Orbits: $L_x = \{x\} \times L$. Kernel of the induced action:

 $A.v \in \text{ker } \lambda$ $(v = f(x))$

Varying with x.

 $\overline{}$ I. Definably primitive groups

Examples

Intransitive [Gropp] $\mathrm{E}_{\mathrm{V}}=\mathrm{End}(\mathrm{V})$ acts on L^2 via $\mathrm{A}.(\mathrm{x},\mathrm{y})=(\mathrm{x},\mathrm{y}+\lambda(\mathrm{A}.f(\mathrm{x})))$

Faithful action on a rank 2 set of unbounded rank.

Imprimitive

G algebraic acting on V, $W < V$ containing no G-invariant subspace. $\hat{G} = V \times G$ acting on the coset space W $\setminus \hat{G}$. We want: G fixed, dim(V/W) fixed, dim(V) $\rightarrow \infty$.

- \blacksquare G simple, V irreducible, W a hyperplane.
- \blacksquare G a torus, all eigenspaces 1-dimensional, W avoids them.

 $\overline{}$ I. Definably primitive groups

Generic Multiple Transitivity

 $X^{(t)}$: t-tuples of *distinct* elements. t-transitive: transitive on $X^{(t)}$

 $\overline{}$ I. Definably primitive groups

Generic Multiple Transitivity

 $X^{(t)}$: t-tuples of *distinct* elements. t-transitive: transitive on $X^{(t)}$ Generically transitive: one large orbit Ω on X, i.e.

```
rk(X \setminus \Omega) < rk(X)
```
Generically t-transitive: generically transitive on X^t .

 $\overline{}$ I. Definably primitive groups

Generic Multiple Transitivity

 $X^{(t)}$: t-tuples of *distinct* elements. t-transitive: transitive on $X^{(t)}$ Generically transitive: one large orbit Ω on X, i.e.

 $rk(X \setminus \Omega) < rk(X)$

Generically t-transitive: generically transitive on X^t .

Not fully classified, even for actions of algebraic groups (Popov).

LII. Bounds

1 I. Definably primitive groups

2 II. Bounds

3 III. From ρ_S to τ

4 IV. Structure Theory

Bounds

 (G, X) finite Morley rank, $r = rk(X)$ (fixed)

 $\rho(r)$: sup(rk (G)) with (G, X) definably primitive.

Bounds

 (G, X) finite Morley rank, $r = rk(X)$ (fixed)

 $\rho(r)$: sup(rk (G)) with (G, X) definably primitive. $\tau(r)$: sup t(G, X) i.e. the degree of generic multiple transitivity, with (G, X) definably primitive.

Bounds

(G, X) finite Morley rank, $r = rk(X)$ (fixed)

 $\rho(r)$: sup(rk (G)) with (G, X) definably primitive.

 $\tau(r)$: sup t(G, X) i.e. the degree of generic multiple transitivity, with (G, X) definably primitive.

 $\rho_S(r)$: sup(rk (G)) with r fixed, G simple, acting faithfully on X. $\tau_S(r)$: sup t(G, X) i.e. the degree of generic multiple transitivity, with (G, X) definably primitive and simple.

Bounds

(G, X) finite Morley rank, $r = rk(X)$ (fixed)

 $\rho(r)$: sup(rk (G)) with (G, X) definably primitive.

 $\tau(r)$: sup t(G, X) i.e. the degree of generic multiple transitivity, with (G, X) definably primitive.

 $\rho_S(r)$: sup(rk (G)) with r fixed, G simple, acting faithfully on X. $\tau_{\rm S}(r)$: sup t(G, X) i.e. the degree of generic multiple transitivity, with (G, X) definably primitive and simple.

Theorem

All of these are bounded in terms of rk (X)*.*

Ranks of:

- Simple groups acting transitively;
- Generically highly transitive definably primitive (or simple) groups;
- Definably primitive groups.

Theorem

All of these are bounded in terms of rk (X)*.*

Strategy: Definably primitive \rightarrow generically highly transitive \rightarrow simple transitive \rightarrow simple highly transitive \rightarrow structure theory.

From τ to ρ or τ*^S* to ρ*^S*

$ρ:$ rk (G); $τ:$ degree of generic transitivity

Proposition

$$
r \cdot \tau(r) \leq \rho(r) \leq r\tau(r) + {r \choose 2}.
$$

Remark: For transitive groups $rk(G) \geq rk(X)$ and so $\rho \geq r \cdot \tau$.

From τ to ρ (cont.)

ok : the *generic rank* of an orbit with *k*-independent elements fixed . . .

 $\alpha = (\alpha_1, \ldots, \alpha_k)$ generic and independent

$$
\{x\in X:r k(x^{G_\alpha}^\circ)=o_k\}\text{ generic in }X
$$

From τ to ρ (cont.)

ok : the *generic rank* of an orbit with *k*-independent elements fixed ...

Lemma

If $0 < o_k < r$ **k** (X) then $o_{k+1} < o_k$.

In short order $o_k =$ 0, $\boldsymbol{G_\alpha}^\circ$ acts generically trivially, and $\boldsymbol{G_\alpha}$ is finite.

From τ to ρ (cont.)

ok : the *generic rank* of an orbit with *k*-independent elements fixed ...

Lemma

If $0 < o_k < r$ **k** (X) then $o_{k+1} < o_k$.

Idea: $o_{k+1} = o_k$ means orbits are generically unaffected by fixing an independent point; this reveals a *G*-invariant definable equivalence relation, whose classes are approximately these orbits.

III. From ρ*^S* to τ

1 [I. Definably primitive groups](#page-5-0)

2 [II. Bounds](#page-16-0)

3 [III. From](#page-26-0) $ρ_S$ to $τ$

4 [IV. Structure Theory](#page-37-0)

MP-OSA

G generically highly transitive and definably primitive. The objective is to reduce to the simple case. Finite group theory: O'Nan-Scott-Aschbacher (OSA) Finite Morley rank: Macpherson-Pillay (MP-OSA) Definable Socle: the group generated by minimal definable normal subgroups.

MP-OSA

G generically highly transitive and definably primitive. The objective is to reduce to the simple case.

Theorem (MP-OSA, preamble)

(*G*,*X*) *definably primitive with socle B. Two cases:*

- **■** Affine case: *B* abelian, *G* = *B* \times *G*_{α}. The action of *G* on *X corresponds to the action of G on B by translation and conjugation. B is G*_α-minimal.
- *Else B* $= T_1 \times \cdots T_k$ *is a product of isomorphic simple groups.*

Simple groups are at least in view here. To bring them onto the scene as the central characters takes some more analysis.

Affine groups

 $G = A \rtimes H$ (*H* acts on *A*). Use *rk* (*A*) to control *rk* (*H*), (*A H*-minimal, i.e. *G* definably primitive).

Theorem

Let (H, A) *be as stated and* $r = rk(A)$ *. Then one of the following holds.*

A is torsion free, divisible: then rk $(H) \leq r^2$

A is elementary abelian: in this case, if every definable simple nonabelian subgroup of H has rank at most s, then

 $rk(H) \leq max(r^2, r(s^2 + s))$

Affine groups

Theorem

Let (H, A) *be as stated and* $r = rk(A)$ *. Then one of the following holds.*

- *A* is torsion free, divisible: then rk $(H) \leq r^2$
- *A is elementary abelian: in this case, if every definable simple nonabelian subgroup of H has rank at most s, then*

$$
\textit{rk}\,(H) \leq \max(r^2, r(s^2+s))
$$

The bound *r* ² corresponds to the linear case: *r* being the "dimension" of the "space" on which *H* acts. The proof reflects this idea.

Affine groups

Theorem

Let (H, A) *be as stated and* $r = rk(A)$ *. Then one of the following holds.*

A is torsion free, divisible: then rk $(H) \leq r^2$

. . .

If *A* is *torsion free* then *A* is pointwise definable from a sequence of at most *r* elements $a = (a_1, \ldots, a_n)$ and therefore $G_a = 1$, *rk* $(G) \leq nr \leq r^2$.

Affine groups

Theorem

Let (H, A) *be as stated and* $r = rk(A)$ *. Then one of the following holds.*

- *. . .*
- *A is elementary abelian: in this case, if every definable simple nonabelian subgroup of H has rank at most s, then*

$$
\textit{rk}(H) \leq \max(r^2, r(s^2+s))
$$

The case *A elementary abelian* takes more machinery, notably Wagner's results on fields of finite Morley rank.

Nonabelian socles

(*G*,*X*) definably primitive with nonabelian definable socle, and $r = rk(X)$.

Lemma

If G has more than one minimal normal definable subgroup, then rk $(G) \leq r^2 + 2r$.

(Quite similar to the case of divisible abelian socle in fact.)

 $I = III$. From ρ_S to τ

More MP-OSA

The other case:

Notation

L is the unique minimal normal definable subgroup of G; $\mathcal{L} = \prod \mathcal{L}_i$ with \mathcal{L}_i isomorphic simple groups.

More MP-OSA

The other case:

Notation

L is the unique minimal normal definable subgroup of G; $\mathcal{L} = \prod \mathcal{L}_i$ with \mathcal{L}_i isomorphic simple groups.

There are two possibilities:

(a) The point stabilizer is $L_{\alpha} = \prod_i (L_i)_{\alpha}$; (b) $L = \prod L_i$ with each L_i a product of k simple factors L_i $(i \in I)$, $k > 2$, and $(L_I)_α$ a diagonal subgroup.

More MP-OSA

There are two possibilities:

(a) The point stabilizer is $L_{\alpha} = \prod_i (L_i)_{\alpha}$;

(b) $L = \prod L_i$ with each L_i a product of k simple factors L_i $(i \in I)$, $k > 2$, and $(L_I)_α$ a diagonal subgroup.

Lemma

Correspondingly, with $s = rk(L_i)$ *, we have* (a) $rk(G) \le r(s + s^2)$; (b) $rk(G) \leq 2(r^2 + r)$.

What is wanted is a bound on *s*.

1 I. Definably primitive groups

II. Bounds

3 III. From ρ_S to τ

4 IV. Structure Theory

LIV. Structure Theory

Involutions

A generically *t*-transitive group, with *t* ≥ 2 contains an element of order 2.

Theorem (Classification)

Let G be a simple group of finite Morley rank containing an involution. Then one of the following holds.

- *G is a simple algebraic group.*
- *G contains a nontrivial* 2*-torus.*

2*-torus:* Divisible abelian 2-group. So much for structure theory.

LIV. Structure Theory

Involutions

Theorem (Classification)

Let G be a simple group of finite Morley rank containing an involution. Then one of the following holds.

- *G* is a simple algebraic group.
- *G contains a nontrivial* 2*-torus.*

The rest of our strategy comes down to *control of p-tori*. Objectives:

- Bound the ranks of *p*-tori above in terms of *r*;
- Bound the ranks of *p*-tori below in terms of *t*.

Actions of *p*-tori

Lemma

Let (*G*, Ω) *be a definably primitive permutation group of finite Morley rank, T a definable divisible abelian abelian subgroup, and O*(*T*) *its largest definable torsion free subgroup. Then*

rk $(T/O(T)) \leq rK(X)$

Actions of *p*-tori

Lemma

Let (*G*, Ω) *be a definably primitive permutation group of finite Morley rank, T a definable divisible abelian abelian subgroup, and O*(*T*) *its largest definable torsion free subgroup. Then* rk (*T*/*O*(*T*)) < *rk* (*X*)

Proof.

*T*₀ be the torsion subgroup of *T*. Let $\alpha \in X$ be generic over *T*₀. Then $T_{\alpha} \cap T_0 = 1$.

Actions of *p*-tori

Lemma

Let (*G*, Ω) *be a definably primitive permutation group of finite Morley rank, T a definable divisible abelian abelian subgroup, and O*(*T*) *its largest definable torsion free subgroup. Then* rk (*T*/*O*(*T*)) < *rk* (*X*)

Proof.

*T*₀ be the torsion subgroup of *T*. Let $\alpha \in X$ be generic over *T*₀. Then $T_\alpha \cap T_0 = 1$. So $T_\alpha \leq O(T)$ and

$$
\mathit{rk}\left(\mathit{T/O}(\mathit{T})\right) \leq \mathit{rk}\left(\mathit{T}/\mathit{T}_{\alpha}\right) = \mathit{rk}\left(\alpha^{\mathit{T}}\right) \leq \mathit{rk}\left(\mathit{X}\right)
$$

Actions of *p*-tori

Lemma

Let (*G*, Ω) *be a definably primitive permutation group of finite Morley rank, T a definable divisible abelian abelian subgroup, and O*(*T*) *its largest definable torsion free subgroup. Then rk* $(T/O(T)) \leq rk(X)$

In particular if *G* is algebraic and *T* is a maximal torus, its algebraic dimension is bounded by *rk* (*X*), after which the classification of simple algebraic groups suffices.

Sporadic groups?

Key case: a generically highly transitive simple group *G* with a nontrivial 2-torus of bounded Morley rank. So what?

Sporadic groups?

Key case: a generically highly transitive simple group *G* with a nontrivial 2-torus of bounded Morley rank. So what?

If *G* is generically *t*-transitive and $\alpha = (x_1, \ldots, x_t)$ is a sequence of generic and independent elements of *X*, then *G* induces the action of *Sym^t* on this set.

Sporadic groups?

Key case: a generically highly transitive simple group *G* with a nontrivial 2-torus of bounded Morley rank. So what?

Better:

If *G* is generically 2*t*-transitive then G_{α} is generically *t*-transitive and $N(G_{\alpha})$ induces the action of Sym_t on these elements.

Sporadic groups?

Key case: a generically highly transitive simple group *G* with a nontrivial 2-torus of bounded Morley rank. So what?

Simplify: imagine *Sym_t* acting on *G*_α; even better, on a maximal 2-torus *T* of *G*_α. From there one would expect to *pump up* the rank of *T*, so bounding the rank of *T* above would finally control *t*!

A little too enthusiastic?

A maximal 2-torus

(*G*,*X*) highly generically transitive.

Imagine: *H* a connected definable subgroup, also pretty highly generically transitive.

$$
\alpha=(x_1,\ldots\ldots,x_n)
$$

a *long* sequence of generic independent points. *T* a maximal 2-torus of H_α . And Σ, some finite group resembling $\mathcal{S} \textit{y} m_n^{}$ acting on *T*.

A maximal 2-torus

(*G*,*X*) highly generically transitive.

Imagine: *H* a connected definable subgroup, also pretty highly generically transitive.

 $\alpha = (x_1, \ldots, x_n)$

a *long* sequence of generic independent points. *T* a maximal 2-torus of H_α . And Σ, some finite group resembling $\mathcal{S} \textit{y} m_n^{}$ acting on *T*.

We have a bound on *rk* (*T*/*O*(*T*)), namely *rk* (*X*). If Σ acts faithfully, then yes, we can pump up *rk* ($T/O(T)$) in terms of *n* i.e. bound *n* in terms of *rk* (*X*)—and be done.

A maximal 2-torus

(*G*,*X*) highly generically transitive.

Imagine: *H* a connected definable subgroup, also pretty highly generically transitive.

 $\alpha = (x_1, \ldots, x_n)$

a *long* sequence of generic independent points. *T* a maximal 2-torus of H_α . And Σ, some finite group resembling $\mathcal{S} \textit{y} m_n^{}$ acting on *T*.

We have a bound on *rk* (*T*/*O*(*T*)), namely *rk* (*X*). If Σ acts faithfully, then yes, we can pump up *rk* (*T*/*O*(*T*)) in terms of *n* i.e. bound *n* in terms of *rk* (*X*)—and be done. But what if Σ acts trivially?

A maximal 2-torus

(*G*,*X*) highly generically transitive.

Imagine: *H* a connected definable subgroup, also pretty highly generically transitive.

 $\alpha = (x_1, \ldots, x_n)$

a *long* sequence of generic independent points. *T* a maximal 2-torus of H_α . And Σ, some finite group resembling $\mathcal{S} \textit{y} m_n^{}$ acting on *T*.

We have a bound on *rk* (*T*/*O*(*T*)), namely *rk* (*X*). If Σ acts faithfully, then yes, we can pump up *rk* (*T*/*O*(*T*)) in terms of *n* i.e. bound *n* in terms of *rk* (*X*)—and be done. But what if Σ acts trivially? Oops!

A very maximal 2-torus

Lemma

Let H be simple of finite Morley rank, T a maximal 2*-torus (nontrivial). Then T contains all the* 2*-elements in C*(*T*)*.*

A very maximal 2-torus

Lemma

Let H be simple of finite Morley rank, T a maximal 2*-torus (nontrivial). Then T contains all the* 2*-elements in C*(*T*)*.*

Lemma

 (G, X) *simple, generically highly transitive, r = rk* (X) *. Then for any k there is a connected subgroup H of G with*

$$
rk(G)-rk(H)\leq (kr+1)r
$$

so that the point stabilizer H^α *contains a maximal 2-torus of H (*α *an independent generic sequence of length k).*

A very maximal 2-torus

Lemma

Let H be simple of finite Morley rank, T a maximal 2*-torus (nontrivial). Then T contains all the* 2*-elements in C*(*T*)*.*

Lemma

 (G, X) *simple, generically highly transitive, r = rk* (X) *. Then for any k there is a connected subgroup H of G with*

$$
\mathit{rk}(G)-\mathit{rk}(H)\leq (\mathit{kr}+1)r
$$

so that the point stabilizer H^α *contains a maximal 2-torus of H (*α *an independent generic sequence of length k).*

These two together give a *faithful* action of "*Sym^k* ".

A very maximal 2-torus

Lemma

Let H be simple of finite Morley rank, T a maximal 2*-torus (nontrivial). Then T contains all the* 2*-elements in C*(*T*)*.*

Lemma

 (G, X) *simple, generically highly transitive, r = rk* (X) *. Then for any k there is a connected subgroup H of G with*

$$
\mathit{rk}(G)-\mathit{rk}(H)\leq (\mathit{kr}+1)r
$$

so that the point stabilizer H^α *contains a maximal 2-torus of H (*α *an independent generic sequence of length k).*

So *rk* (*T*/*O*(*T*)) grows with *t* (linearly) and is bounded by *r*. (Done)

L_{IV.} Structure Theory

Many problems

The bounds are weak.

r = 0: $\rho = 0$ $r = 1$: $\rho = 3$, $\tau = 3$ (Hrushovski)

Many problems

The bounds are weak.

r = 0: $\rho = 0$ $r = 1$: $\rho = 3$, $\tau = 3$ (Hrushovski) $r = 2$: $\tau \leq 27$. Gropp: sharp generic transitivity ≤ 6 .

Many problems

The bounds are weak.

r = 0: $\rho = 0$ $r = 1$: $\rho = 3$, $\tau = 3$ (Hrushovski) $r = 2$: $\tau \leq 27$. Gropp: sharp generic transitivity ≤ 6 .

Problem (Borovik)

Let G be connected, acting transitively and generically (*n* + 2)*-transitively on a set of Morley rank n. Then G is the projective group acting on projective space over an algebraically closed field.*

(For 18 more or less related problems, see *Permutation groups of finite Morley rank*, Newton Proceedings Volume, to appear.)