Permutation Groups of Finite Morley Rank

Gregory Cherlin

Feb. 8, 2007 (Gainesville)

Reduction of a theorem of permutation group theory to the simple case, and solution by "structure theory."

Reduction of a theorem of permutation group theory to the simple case, and solution by "structure theory."

Permutation group: (G, X)

Morley rank: rk(X) (notion of dimension, for X definable)

Reduction of a theorem of permutation group theory to the simple case, and solution by "structure theory."

Permutation group: (G, X)

Morley rank: rk(X) (notion of dimension, for X definable)

Theorem (with Borovik)

The rank of G can be bounded in terms of the rank of X, if the action of G is faithful and definably primitive.

Reduction of a theorem of permutation group theory to the simple case, and solution by "structure theory."

Permutation group: (G, X)

Morley rank: rk(X) (notion of dimension, for X definable)

Theorem (with Borovik)

The rank of G can be bounded in terms of the rank of X, if the action of G is faithful and definably primitive.

Method: structure theory for *simple* groups of finite Morley rank.

- 1 I. Definably primitive groups
- 2 II. Bounds
- 3 III. From $\rho_{\rm S}$ to au
- 4 IV. Structure Theory

I. Definably primitive groups

Primitivity

Primitive: no nontrivial invariant equivalence relation on X. Definably primitive: no nontrivial definable invariant equivalence relation on X.

Primitivity

Primitive: no nontrivial invariant equivalence relation on X. Definably primitive: no nontrivial definable invariant equivalence relation on X.

As it happens, these notions are equivalent except when the point stabilizer \mathbf{G}_α is finite.

Primitivity

Primitive: no nontrivial invariant equivalence relation on X. Definably primitive: no nontrivial definable invariant equivalence relation on X.

Group-theoretically: $G_{\alpha} < G$ maximal, or definably maximal.

Permutation Groups of Finite Morley Rank

I. Definably primitive groups

Examples

Intransitive [Gropp]

Ingredients: field K, vector space V, 1-dim space L, and maps

 $\lambda: V \rightarrow L$ linear; $f: L \rightarrow V$ space curve

Examples

Intransitive [Gropp]

Ingredients: field K, vector space V, 1-dim space L, and maps

 $\lambda: V \twoheadrightarrow L \text{ linear; } f: L \to V \text{ space curve}$

$$E_V = End(V)$$
 acts on L^2 via $A.(x, y) = (x, y + \lambda(A.f(x)))$

Examples

Intransitive [Gropp]

Ingredients: field K, vector space V, 1-dim space L, and maps

$$\lambda: V \twoheadrightarrow L$$
 linear; $f: L \rightarrow V$ space curve

$$E_V = End(V)$$
 acts on L^2 via $A.(x,y) = (x, y + \lambda(A.f(x)))$

Faithful action on a rank 2 set of unbounded rank.

Orbits: $L_x = \{x\} \times L$. Kernel of the induced action:

$$A.v \in \ker \lambda$$
 $(v = f(x))$

Varying with x.

Examples

Intransitive [Gropp]

$$E_V = End(V)$$
 acts on L^2 via $A.(x, y) = (x, y + \lambda(A.f(x)))$

Faithful action on a rank 2 set of unbounded rank.

Imprimitive

G algebraic acting on V, $W \leq V$ containing no G-invariant subspace. $\hat{G} = V \rtimes G$ acting on the coset space $W \backslash \hat{G}$. We want: G fixed, dim(V/W) fixed, dim $(V) \rightarrow \infty$.

- G simple, V irreducible, W a hyperplane.
- G a torus, all eigenspaces 1-dimensional, W avoids them.

I. Definably primitive groups

Generic Multiple Transitivity

 $X^{(t)}$: t-tuples of *distinct* elements. t-transitive: transitive on $X^{(t)}$

Generic Multiple Transitivity

X^(t): t-tuples of *distinct* elements.

t-transitive: transitive on X(t)

Generically transitive: one large orbit Ω on X, i.e.

$$\text{rk}\left(X \setminus \Omega\right) < \text{rk}\left(X\right)$$

Generically t-transitive: generically transitive on X^t .

Generic Multiple Transitivity

X^(t): t-tuples of *distinct* elements.

t-transitive: transitive on $X^{(t)}$

Generically transitive: one large orbit Ω on X, i.e.

$$\text{rk}\left(X \setminus \Omega\right) < \text{rk}\left(X\right)$$

Generically t-transitive: generically transitive on X^t .

Not fully classified, even for actions of algebraic groups (Popov).

- 1 I. Definably primitive groups
- 2 II. Bounds
- 3 III. From $\rho_{\rm S}$ to au
- 4 IV. Structure Theory

(G, X) finite Morley rank, r = rk(X) (fixed)

 $\rho(r)$: sup(rk(G)) with (G, X) definably primitive.

```
(G, X) finite Morley rank, r = rk(X) (fixed)
```

ho(r): sup(rk(G)) with (G, X) definably primitive. ho(r): supt(G, X) i.e. the degree of generic multiple transitivity, with (G, X) definably primitive.

```
(G, X) finite Morley rank, r = rk(X) (fixed)
```

 $\rho(r)$: sup(rk(G)) with (G, X) definably primitive.

 $\tau(r)$: sup t(G,X) i.e. the degree of generic multiple transitivity, with (G,X) definably primitive.

 $\rho_{S}(r)$: sup(rk (G)) with r fixed, G simple, acting faithfully on X.

 $\tau_S(r)$: sup t(G,X) i.e. the degree of generic multiple transitivity, with (G,X) definably primitive and simple.

```
(G, X) finite Morley rank, r = rk(X) (fixed)
```

 $\rho(r)$: sup(rk(G)) with (G, X) definably primitive.

 $\tau(r)$: sup t(G,X) i.e. the degree of generic multiple transitivity, with (G,X) definably primitive.

 $ho_S(r)$: sup(rk(G)) with r fixed, G simple, acting faithfully on X. $au_S(r)$: sup t(G, X) i.e. the degree of generic multiple transitivity, with (G, X) definably primitive and simple.

Theorem

All of these are bounded in terms of rk(X).

Ranks of:

- Simple groups acting transitively;
- Generically highly transitive definably primitive (or simple) groups;
- Definably primitive groups.

Theorem

All of these are bounded in terms of rk(X).

Strategy: Definably primitive \rightarrow generically highly transitive \rightarrow simple transitive \rightarrow simple highly transitive \rightarrow structure theory.

From au to ho or $au_{\mathcal{S}}$ to $ho_{\mathcal{S}}$

 ρ : rk (G); τ : degree of generic transitivity

Proposition

$$r \cdot \tau(r) \le \rho(r) \le r\tau(r) + \binom{r}{2}$$
.

Remark: For transitive groups $\operatorname{rk}(G) \geq \operatorname{rk}(X)$ and so $\rho \geq r \cdot \tau$.

From τ to ρ (cont.)

 o_k : the *generic rank* of an orbit with k-independent elements fixed . . .

$$\alpha = (\alpha_1, \dots, \alpha_k)$$
 generic and independent

$$\{x \in X : rk(x^{G_{\alpha}}) = o_k\}$$
 generic in X

From τ to ρ (cont.)

 o_k : the *generic rank* of an orbit with k-independent elements fixed . . .

Lemma

If
$$0 < o_k < rk(X)$$
 then $o_{k+1} < o_k$.

In short order $o_k=0$, $G_{\alpha}{}^{\circ}$ acts generically trivially, and G_{α} is finite.

From τ to ρ (cont.)

 o_k : the *generic rank* of an orbit with k-independent elements fixed . . .

Lemma

If
$$0 < o_k < rk(X)$$
 then $o_{k+1} < o_k$.

Idea: $o_{k+1} = o_k$ means orbits are generically unaffected by fixing an independent point; this reveals a *G*-invariant definable equivalence relation, whose classes are approximately these orbits.

 \sqsubseteq III. From $ho_{\mathcal{S}}$ to au

- 1 I. Definably primitive groups
- 2 II. Bounds
- 3 III. From $\rho_{\mathcal{S}}$ to τ
- 4 IV. Structure Theory

Permutation Groups of Finite Morley Rank

 \sqsubseteq III. From ρ_S to τ

MP-OSA

G generically highly transitive and definably primitive. The objective is to reduce to the simple case.

Finite group theory: O'Nan-Scott-Aschbacher (OSA)

Finite Morley rank: Macpherson-Pillay (MP-OSA)

Definable Socle: the group generated by minimal definable normal subgroups.

MP-OSA

G generically highly transitive and definably primitive. The objective is to reduce to the simple case.

Theorem (MP-OSA, preamble)

(G, X) definably primitive with socle B. Two cases:

- Affine case: B abelian, $G = B \rtimes G_{\alpha}$. The action of G on X corresponds to the action of G on B by translation and conjugation. B is G_{α} -minimal.
- Else $B = T_1 \times \cdots T_k$ is a product of isomorphic simple groups.

Simple groups are at least in view here. To bring them onto the scene as the central characters takes some more analysis.

Affine groups

 $G = A \rtimes H$ (H acts on A). Use rk(A) to control rk(H), (A H-minimal, i.e. G definably primitive).

Theorem

Let (H, A) be as stated and r = rk(A). Then one of the following holds.

- A is torsion free, divisible: then $rk(H) \le r^2$
- A is elementary abelian: in this case, if every definable simple nonabelian subgroup of H has rank at most s, then

$$rk(H) \leq \max(r^2, r(s^2 + s))$$

 \sqsubseteq III. From ρ_S to τ

Affine groups

Theorem

Let (H, A) be as stated and r = rk(A). Then one of the following holds.

- A is torsion free, divisible: then $rk(H) \le r^2$
- A is elementary abelian: in this case, if every definable simple nonabelian subgroup of H has rank at most s, then

$$rk(H) \leq \max(r^2, r(s^2 + s))$$

The bound r^2 corresponds to the linear case: r being the "dimension" of the "space" on which H acts. The proof reflects this idea.

Affine groups

Theorem

Let (H, A) be as stated and r = rk(A). Then one of the following holds.

- A is torsion free, divisible: then $rk(H) \le r^2$
- **...**

If *A* is *torsion free* then *A* is pointwise definable from a sequence of at most *r* elements $a=(a_1,\ldots,a_n)$ and therefore $G_a=1$, $rk(G)\leq nr\leq r^2$.

Affine groups

Theorem

Let (H, A) be as stated and r = rk(A). Then one of the following holds.

- ...
- A is elementary abelian: in this case, if every definable simple nonabelian subgroup of H has rank at most s, then

$$rk(H) \leq \max(r^2, r(s^2 + s))$$

The case *A elementary abelian* takes more machinery, notably Wagner's results on fields of finite Morley rank.

Nonabelian socles

(G, X) definably primitive with nonabelian definable socle, and r = rk(X).

Lemma

If G has more than one minimal normal definable subgroup, then $rk(G) \le r^2 + 2r$.

(Quite similar to the case of divisible abelian socle in fact.)

 \sqsubseteq III. From ρ_S to τ

More MP-OSA

The other case:

Notation

L is the unique minimal normal definable subgroup of G; $L = \prod L_i$ with L_i isomorphic simple groups.

 \square III. From $\rho_{\mathcal{S}}$ to τ

More MP-OSA

The other case:

Notation

L is the unique minimal normal definable subgroup of G; $L = \prod L_i$ with L_i isomorphic simple groups.

There are two possibilities:

- (a) The point stabilizer is $L_{\alpha} = \prod_{i} (L_{i})_{\alpha}$;
- (b) $L = \prod L_I$ with each L_I a product of k simple factors L_i $(i \in I), k \geq 2$, and $(L_I)_{\alpha}$ a diagonal subgroup.

More MP-OSA

There are two possibilities:

- (a) The point stabilizer is $L_{\alpha} = \prod_{i} (L_{i})_{\alpha}$;
- (b) $L = \prod L_I$ with each L_I a product of k simple factors L_i ($i \in I$), $k \ge 2$, and $(L_I)_{\alpha}$ a diagonal subgroup.

Lemma

Correspondingly, with $s = rk(L_i)$, we have

- (a) $rk(G) \le r(s+s^2);$
- (b) $rk(G) \leq 2(r^2 + r)$.

What is wanted is a bound on s.

- 1 I. Definably primitive groups
- 2 II. Bounds
- 3 III. From ρ_S to τ
- 4 IV. Structure Theory

Involutions

A generically *t*-transitive group, with $t \ge 2$ contains an element of order 2.

Theorem (Classification)

Let G be a simple group of finite Morley rank containing an involution. Then one of the following holds.

- G is a simple algebraic group.
- G contains a nontrivial 2-torus.

2-*torus:* Divisible abelian 2-group. So much for structure theory.

Involutions

Theorem (Classification)

Let G be a simple group of finite Morley rank containing an involution. Then one of the following holds.

- G is a simple algebraic group.
- G contains a nontrivial 2-torus.

The rest of our strategy comes down to *control of p-tori*. Objectives:

- Bound the ranks of p-tori above in terms of r;
- Bound the ranks of p-tori below in terms of t.

Lemma

Let (G,Ω) be a definably primitive permutation group of finite Morley rank, T a definable divisible abelian abelian subgroup, and O(T) its largest definable torsion free subgroup. Then

$$rk(T/O(T)) \leq rk(X)$$

Lemma

Let (G,Ω) be a definably primitive permutation group of finite Morley rank, T a definable divisible abelian abelian subgroup, and O(T) its largest definable torsion free subgroup. Then $\operatorname{rk}(T/O(T)) \leq \operatorname{rk}(X)$

Proof.

 T_0 be the torsion subgroup of T. Let $\alpha \in X$ be generic over T_0 . Then $T_{\alpha} \cap T_0 = 1$.

Lemma

Let (G,Ω) be a definably primitive permutation group of finite Morley rank, T a definable divisible abelian abelian subgroup, and O(T) its largest definable torsion free subgroup. Then $\operatorname{rk}(T/O(T)) \leq \operatorname{rk}(X)$

Proof.

 T_0 be the torsion subgroup of T. Let $\alpha \in X$ be generic over T_0 . Then $T_\alpha \cap T_0 = 1$. So $T_\alpha \leq O(T)$ and

$$rk(T/O(T)) \le rk(T/T_{\alpha}) = rk(\alpha^{T}) \le rk(X)$$

Lemma

Let (G,Ω) be a definably primitive permutation group of finite Morley rank, T a definable divisible abelian abelian subgroup, and O(T) its largest definable torsion free subgroup. Then $rk\left(T/O(T)\right) \leq rk\left(X\right)$

In particular if G is algebraic and T is a maximal torus, its algebraic dimension is bounded by rk(X), after which the classification of simple algebraic groups suffices.

Permutation Groups of Finite Morley Rank

L IV. Structure Theory

Sporadic groups?

Key case: a generically highly transitive simple group *G* with a nontrivial 2-torus of bounded Morley rank. So what?

Sporadic groups?

Key case: a generically highly transitive simple group *G* with a nontrivial 2-torus of bounded Morley rank. So what?

If G is generically t-transitive and $\alpha = (x_1, \dots, x_t)$ is a sequence of generic and independent elements of X, then G induces the action of Sym_t on this set.

Permutation Groups of Finite Morley Rank

L.V. Structure Theory

Sporadic groups?

Key case: a generically highly transitive simple group *G* with a nontrivial 2-torus of bounded Morley rank. So what?

Better:

If G is generically 2t-transitive then G_{α} is generically t-transitive and $N(G_{\alpha})$ induces the action of Sym_t on these elements.

Sporadic groups?

Key case: a generically highly transitive simple group *G* with a nontrivial 2-torus of bounded Morley rank. So what?

Simplify: imagine Sym_t acting on G_α ; even better, on a maximal 2-torus T of G_α . From there one would expect to $pump\ up$ the rank of T, so bounding the rank of T above would finally control t!

A little too enthusiastic ...?

(G, X) highly generically transitive. Imagine: H a connected definable subgroup, also pretty highly generically transitive.

$$\alpha = (x_1, \ldots, x_n)$$

a *long* sequence of generic independent points. T a maximal 2-torus of H_{α} . And Σ , some finite group resembling Sym_n , acting on T.

(G, X) highly generically transitive. Imagine: H a connected definable subgroup, also pretty highly generically transitive.

$$\alpha = (x_1, \ldots, x_n)$$

a *long* sequence of generic independent points. T a maximal 2-torus of H_{α} . And Σ , some finite group resembling Sym_n , acting on T.

We have a bound on rk(T/O(T)), namely rk(X). If Σ acts faithfully, then yes, we can pump up rk(T/O(T)) in terms of n i.e. bound n in terms of rk(X)—and be done.

(G, X) highly generically transitive. Imagine: H a connected definable subgroup, also pretty highly generically transitive.

$$\alpha = (x_1, \ldots, x_n)$$

a *long* sequence of generic independent points. T a maximal 2-torus of H_{α} . And Σ , some finite group resembling Sym_n , acting on T.

We have a bound on rk(T/O(T)), namely rk(X). If Σ acts faithfully, then yes, we can pump up rk(T/O(T)) in terms of n i.e. bound n in terms of rk(X)—and be done. But what if Σ acts trivially?

(G, X) highly generically transitive. Imagine: H a connected definable subgroup, also pretty highly generically transitive.

$$\alpha = (x_1, \ldots, x_n)$$

a *long* sequence of generic independent points. T a maximal 2-torus of H_{α} . And Σ , some finite group resembling Sym_n , acting on T.

We have a bound on rk(T/O(T)), namely rk(X). If Σ acts faithfully, then yes, we can pump up rk(T/O(T)) in terms of n i.e. bound n in terms of rk(X)—and be done. But what if Σ acts trivially? Oops!

Permutation Groups of Finite Morley Rank

└ IV. Structure Theory

A very maximal 2-torus

Lemma

Let H be simple of finite Morley rank, T a maximal 2-torus (nontrivial). Then T contains all the 2-elements in C(T).

A very maximal 2-torus

Lemma

Let H be simple of finite Morley rank, T a maximal 2-torus (nontrivial). Then T contains all the 2-elements in C(T).

Lemma

(G, X) simple, generically highly transitive, r = rk(X). Then for any k there is a connected subgroup H of G with

$$rk(G) - rk(H) \le (kr + 1)r$$

so that the point stabilizer H_{α} contains a maximal 2-torus of H (α an independent generic sequence of length k).

A very maximal 2-torus

Lemma

Let H be simple of finite Morley rank, T a maximal 2-torus (nontrivial). Then T contains all the 2-elements in C(T).

Lemma

(G, X) simple, generically highly transitive, r = rk(X). Then for any k there is a connected subgroup H of G with

$$rk(G) - rk(H) \le (kr + 1)r$$

so that the point stabilizer H_{α} contains a maximal 2-torus of H (α an independent generic sequence of length k).

These two together give a *faithful* action of " Sym_k ".

A very maximal 2-torus

Lemma

Let H be simple of finite Morley rank, T a maximal 2-torus (nontrivial). Then T contains all the 2-elements in C(T).

Lemma

(G, X) simple, generically highly transitive, r = rk(X). Then for any k there is a connected subgroup H of G with

$$rk(G) - rk(H) \le (kr + 1)r$$

so that the point stabilizer H_{α} contains a maximal 2-torus of H (α an independent generic sequence of length k).

So rk(T/O(T)) grows with t (linearly) and is bounded by r. (Done)

Many problems

The bounds are weak.

$$r = 0$$
: $\rho = 0$

$$r=$$
 1: $ho=$ 3, $au=$ 3 (Hrushovski)

Many problems

The bounds are weak.

$$r = 0: \rho = 0$$

$$r=$$
 1: $ho=$ 3, $au=$ 3 (Hrushovski)

r= 2: $\tau \leq$ 27. Gropp: sharp generic transitivity \leq 6.

Many problems

The bounds are weak.

$$r = 0: \rho = 0$$

$$r=1$$
: $\rho=3$, $\tau=3$ (Hrushovski)

r = 2: $\tau \le 27$. Gropp: sharp generic transitivity ≤ 6 .

Problem (Borovik)

Let G be connected, acting transitively and generically (n+2)-transitively on a set of Morley rank n. Then G is the projective group acting on projective space over an algebraically closed field.

(For 18 more or less related problems, see *Permutation groups of finite Morley rank*, Newton Proceedings Volume, to appear.)