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Lab 5: A Nonlinear System

This Maple lab is based in part on earlier versions prepared by Professors R. Falk and R.
Bumby of the Rutgers Mathematics department.

Introduction. In this lab we use Maple to study the phase plane of an autonomous nonlinear
system of two differential equations, i.e., a system of the form

d'(t)=F(zy), ¥ =GCzy). (1)

The distinguishing feature of an autonomous system is that the expressions defining the functions
F and G do not contain the independent variable ¢. This allows many properties of the solutions
to be studied using the curves, called trajectories, that show the path in the xy plane followed by
the solutions. (It is an easy exercise to show that if an initial condition is on a trajectory, then
the whole solution follows that trajectory). The Maple command DEplot may be used to draw
trajectories and direction fields for such systems.

Please obtain the seed file from the web page and save it in your directory on eden, then
prepare the Maple lab according to the instructions and hints in the introduction to Lab 0. Turn in
only the printout of your Maple worksheet, after removing any extraneous material and any errors
you have made.

0. Setup. As usual, the seed file begins with commands which load the required Maple packages:
with(plots):, with(DEtools):, and with(LinearAlgebra):.
1. An autonomous nonlinear system: a. The equation and its critical points.

We will study the nonlinear system

o =drtay -2 =x(d+y—2)

/ 2 (2)

y =6z+6y—zy—a°=(6—z)(z+y)
The equilibrium solutions are [x = 0,y = 0], [z = 2,y = —2], and [x = 6,y = 2]. Maple can obtain
these by using the instructions

F:=2xy - 2%x + x*y - x72;
G:=4xy + 4*x - x*¥y - X"2;
egpts:=solve(F,G,x,y);

which are included in the seed file. Also included are instructions to define the differential equations:

dex:=diff (x(t),t)=eval (F,{x=x(t),y=y(£)});
dey:=diff (y(t),t)=eval(G,{x=x(t),y=y(t)});

For later convenience we have defined F' and G to depend on the variables x and y, but in the
differential equations we must write these variables as x(t) and y(¢); the eval command makes this
substitution.

b. The direction field and nullclines. The next instructions establish an appropriate range
for the independent variable and a useful viewing window, and construct a plot of the direction
field of this system. The plot consists of small arrows pointing the way of the trajectories in the
square —4 <z <8, —6 <y < 6.

trange := -8..8: window:=x=-4..8,y=-6..6:
df :=DEplot([dex,dey], [x(t),y(t)], trange, window,color=GREEN):
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(Note the colon at the end of the instruction defining the plot, which suppresses output of the plot
structure). The color option is used to give a better view of the nullclines and solution curves to
be added later. If you like, you can test different values of the option dirgrid, as in Lab 2, and
customize the value for the plots in this project. A value should be chosen that allows individual
arrows to be identified while including a sufficient number of arrows. To show this plot, you need
only enter its name df1; after defining it. The result should not be left in the worksheet, since we
will include this as part of a display command in the next subsection.

Nullclines. The points where th:e direction field is horizontal (characterized by dy/dt = 0) or
vertical (characterized by dz/dt = 0) form curves called nullclines. In many cases, these curves
provide useful information about the behavior of trajectories without the excessive detail of a
direction field.

For the system (2), the factored form of the expressions for dz/dt and dy/dt allows a simple
description of the nullclines. In particular, the slope field is horizontal along the curves x = 6 and
y = —x. Since x = 6 is a vertical line, it is best to plot these curves parametrically; such a plot
can be constructed using

dh:=plot([[6,t,t=trange], [t,-t,t=trange]],window,color=CORAL):

Construct a similar instruction to produce a plot dv showing where the slope field is vertical; to be
definite, use color=BLUE. Now obtain a display (including a title) combining the slope field and
both sets of nullclines:

display(df,dh,dv,title="Slope field and nullclines: Nonlinear equation");

The equilibrium points should be seen as points lying on one nullcline of each color. Note that the
nullclines usually cut across the arrows in the slope field since they are not solutions of the equation
(except in special cases).

Discussion: For each of the three equilibrium points found in part a, give explicitly the equations
of the vertical and the horizontal nullclines which cross at that point.

c. Trajectories. To study the behavior of the system and the nature and stability of equilibrium
points, it is also useful to construct a plot of the phase plane which shows several trajectories as well
as the direction field. In Lab 4, we did this by finding the ezact solution to the equation. Since this
is in general not be possible for nonlinear equations, we use here the numerical methods that are
part of the DEplot command. To produce each trajectory one specifies an initial condition—i.e., a
point in the phase plane—and asks Maple to produce the trajectory through that point; to get a
significant part of the full trajectory one solves over a range of the independent variable, ¢, which
includes both positive and negative values.

To obtain a good choices of initial conditions, leading to a set of trajectories which illustrate
the important features of the phase plane, requires some trial and error. The seed file contains a list
of six initial conditions, together with a command to produce a plot of the phase plane containing
the direction field and the corresponding six trajectories:

inits:=[[x(0)=1,y(0)=1], [x(0)=2,y(0)=-1], [x(0)=3,y(0)=-2],
[x(0)=1,y(0)=-4], [x(0)=-1,y(0)=2], [x(0)=2,y(0)=-3]1]:

DEplot([dex,dey], [x(t),y(t)],t=trange,inits,window,color=GREEN,
linecolor=[RED,BLUE,BROWN,PLUM, CORAL,BLACK] ,thickness=2,stepsize=0.005,
title="Trajectories: Nonlinear equation");

The choice of stepsize here seems to work well, but you can experiment with other possible choices.
Include the resulting plot in your final worksheet.
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Discussion: By examining the phase plane plot, you should be able to decide the type of each of
the three critical points: stable or unstable node, saddle point, or stable or unstable spiral. Give
your conclusions for each point in the discussion section,

Discussion: In the second discussion section you should describe any interesting properties of each
of the six trajectories shown. In particular, for each one, discuss whether or not that trajectory
appears to approach a critical point—and if so, which one—as t — oo and as t — —oo. In some
cases you will not be able to determine this from your graph, and it is perfectly acceptable to say
so. In your discussion you should identify the various trajectories by color.

d. Linearization. The type and stability of the critical points can be determined by examining
the eigenvalues of the corresponding linear system. The matrix of the linearization of the system
(1) at the critical point (x.,y.) is

(&l &)

Maple can find this matrix in a two step process, first constructing the matrix of partial derivatives
(which must be done only once), then evaluating it at the critical point (done separately for each
point). Instructions for finding A for general z and y and then finding A;, its value at the critical
point in the fourth quadrant, and the eigenvalues of Ay, are in the seed file:

A := Matrix([[diff(F,x),diff(F,y)], [diff(G,x),diff(G,y)]1]);
Al := eval(A,{x=2,y=-2});
Eigenvalues(Al);

Use Maple to find the matrices As and As, and their eigenvalues, corresponding to the critical
points at the origin and in the first quadrant, respectively.

Discussion: In a discussion section, for each critical point, describe what the eigenvalues you found
imply about the type of that point, and compare the answer with the one you found in part c.
(The answers should agree!)

The phase plane near the critical points. In sections e, f, and g we sketch the phase plane
for the true system, and for its linearization, near each of the three critical points. We use a square
window, two units by two units, centered at the critical point, and as initial conditions the four
points (z. + 0.5,y. £ 0.5). In sections e and f we also introduce one extra trajectory which is a
“special trajectory”—that is, a straight-line trajectory—for the linearized system.

Discussion: In each section you should produce two plots. Include also a discussion comparing
the plots for the true and linearized systems: what similarities do you see? What differences? In
sections e and f discuss also the extra trajectory, as described below.

e. The phase plane near (2,—2). For this case the seed file contains the commands needed
to produce the two plots. The commands needed to graph the phase plane of the nonlinear system
near (2,—2) are

trangel := -3..3: windowl := x=1..3,y=-3..-1:

inits1:=[[x(0)=2.5,y(0)=-1.5], [x(0)=1.5,y(0)=-1.5], [x(0)=1.5,y(0)=-2.5],
[x(0)=2.5,y(0)=-2.5], [x(0)=2+2.0/3.0,y(0)=-2+(3.0-sqrt (17.0))/3.01] :

DEplot ([dex,dey], [x(t),y(t)],t=trangel,initsl, windowl,color=GREEN,
linecolor=[RED,BLUE,CYAN,PLUM,BLACK] ,thickness=2,stepsize=0.002
title="Phase plane near (2,-2): nonlinear system");

For the linearized system the commands are
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F1:=-2%u+2%v;

G1l:=4%u+4xv;

dex1l:=diff (x(t),t)=eval (F1,{u=x(t)-2,v=y(t)+2});

deyl:=diff (y(t),t)=eval(Gl,{u=x(t)-2,v=y(t)+2});

DEplot ([dex1,deyl], [x(t),y(t)],t=trangel,initsl, windowl,color=GREEN,
linecolor=[RED,BLUE,CYAN,PLUM,BLACK] ,thickness=2,stepsize=0.002,
title="Phase plane near (2,-2): linearized system");

Note that here:

(i) The functions F; and G are obtained from the matrix A; found in part d.

(ii) In defining the linear differential equations we make the substitutions u = z — z. = = — 2 and
v =19y —y. =1y + 2, so that the resulting phase portrait is centered (in the zy plane) at the
point (2, —2). This provides for easy comparison with the nonlinear case.

Note also that in addition to the four initial conditions (240.5, —2+0.5) we have an initial condition
(2, —2) + (&1,&2)/3, where € = (2,3 — /17) is one of the eigenvectors for the linear problem (found
using the command Eigenvectors(A1)). The corresponding trajectory is a straight line in the
linear system, but not in the nonlinear system.

Discussion: In your discussion, explain why this (black) trajectory looks so different in the two
plots, while the other trajectories are similar.

f. The phase plane near (0,0). Modify the above commands to produce plots of the phase
plane for the nonlinear and linear systems near the origin. In addition to the four initial conditions
(£0.5,+0.5), include also the initial condition (0,0.5). This produces a straight line trajectory in
the linear system, but, in contrast to what happened in part e, also a straight line trajectory in
the nonlinear system.

Discussion: In your discussion, explain why the black trajectory is straight even in the nonlinear
system.

g. The phase plane near (6,2). Modify the above commands to produce plots of the phase
plane for the nonlinear and linear systems near (6,2). There are no straight line trajectories to
consider in this case..

End of Lab 5



