1. Using the Newton form of the interpolating polynomial, determine a cubic polynomial P(x) satisfying

$$P(1) = 1,$$
 $P(3) = 5,$ $P'(3) = 4,$ $P''(3) = 14.$

2. Consider the problem of determining a polynomial $P_2(x)$ of degree ≤ 2 satisfying

$$P_2(x_0) = f(x_0), \qquad P'_2(x_1) = f'(x_1), \qquad P_2(x_2) = f(x_2),$$

where f, x_0, x_1, x_2 are given and $x_0 < x_1 < x_2$. Does this problem have a solution for all given f in $C^1[x_0, x_2]$ and all x_0, x_1, x_2 ? If so, find it; if not, give an example for which there is no solution. Note that this problem does not fit the theory developed in class.

3a. Let $I = \{-1, -1/2, 0, 1/2, 1\}$ and $f(x) = 1/(1+x^2)$. Making use of the following divided difference table,

Divided difference table						
X	f(x)	f[,]	f[, ,]	f[, , ,]	f[, ,	, ,]
-1	.5					
		.6				
5	.8		2			
		.4		4		
0	1		8		.4	-
		4		.4		
.5	.8	_	2			
		6				
1	.5					

find the value of each of the following at x = 3/4.

i) The polynomial P(x) of degree ≤ 4 interpolating f(x) on the set I.

ii) The piecewise linear function L(x) defined on a mesh of width 1/2 interpolating f(x) on I.

iii) The piecewise quadratic function Q(x) defined on a mesh of width 1 interpolating f(x) on I.

3b. Using the error formula, find the smallest bound on the quantity $\max_{x \in [-1,1]} |f(x) - L(x)|$ where L(x) is the approximation given in (ii). As a computational check,

$$f'''(x) = -\frac{24x(x^2 - 1)}{(1 + x^2)^4}.$$

4. Let $a = x_0 < x_1 < \cdots < x_N = b$, where $x_i = a + ih$ and h = (b - a)/N. Note that $x_i - x_{i-1} = h$ for all values of i in this range. Let Q(x) be a piecewise quadratic function defined by $Q(x) = Q_i(x)$ for $x \in (x_{i-1}, x_i)$, $i = 1, \ldots, N$, where $Q_i(x)$ is a quadratic polynomial satisfying:

$$Q_i(x_{i-1}) = f(x_{i-1}), \qquad Q_i(x_{i-1/2}) = f(x_{i-1/2}), \qquad Q_i(x_i) = f(x_i)$$

where $x_{i-1/2} = (x_{i-1} + x_i)/2$.

- a) Give an explicit formula for $Q_i(x)$.
- b) Will Q(x) be a continuous function if f(x) is a continuous function?
- c) Show that

$$\max_{\substack{x \in [x_{i-1}, x_i]}} |(x - x_{i-1})(x - x_{i-1/2})(x - x_i)| = \frac{h^3}{12\sqrt{3}}.$$

HINT: Let $y = x - x_{i-1/2}$. Then
$$\max_{\substack{x \in [x_{i-1}, x_i]}} |(x - x_{i-1})(x - x_{i-1/2})(x - x_i)| = \max_{\substack{y \in [-h/2, h/2]}} |(y - h/2)y(y + h/2)|$$

d) If $|f^{(3)}(x)| \leq M_{3,i}$ for all $x \in [x_{i-1}, x_i]$, find an upper bound on $|f(x) - Q_i(x)|$ valid for all $x \in [x_{i-1}, x_i]$ which depends only on $M_{3,i}$, and h (but does not depend on x).

e) Let $M_3 = \max_{1 \le i \le N} M_{3,i}$. Show that for all $x \in [a, b]$, $|f(x) - Q(x)| \le \frac{M_3}{3!} \frac{h^3}{12\sqrt{3}}.$

f) If $f(x) = 24e^{3(x-1)}$ and [a, b] = [0, 1], determine a value of h that will guarantee an error of $\leq 10^{-6}$ for all $x \in [0, 1]$.