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10. Gaussian Quadrature

10.1. Quadrature formulas with given abscissas. We have previously seen that one
way of obtaining quadrature formulas of the form

∫ b

a

f(x) dx =
n

∑

j=0

Hjf(xj) + E

in the case when the xj are specified is to integrate the polynomial of degree ≤ n interpolating
f at the points x0, · · · , xn. Abstractly, we could use the Lagrange form of the interpolating
polynomial, Pn(x) =

∑n

j=0 Lj,n(x)f(xj) to obtain the formula

∫ b

a

f(x) dx ≈
∫ b

a

Pn(x) dx =
n

∑

j=0

[∫ b

a

Lj,n(x) dx

]

f(xj),

i.e., Hj =
∫ b

a
Lj,n(x) dx. (In our derivations, we used the Newton form of the interpolating

polynomial.)

When f is a polynomial of degree ≤ n, f ≡ Pn, so the quadrature formula is exact for all
polynomials of degree ≤ n. Hence, we have determined quadrature formulas of the above
form, where the Hj are determined by the criteria that the formula be exact for polynomials
of as high a degree as possible. We could also obtain these formulas by the method of
undetermined coefficients. Since we have n + 1 weights Hj, we would expect exactness for
polynomials of degree ≤ n. Substituting f(x) = xk, k = 0, · · · , n, we get the equations:

∫ b

a

xk dx =
n

∑

j=0

Hjx
k
j .

This is a set of n + 1 linear equations for H0, · · · , Hn.








1 1 · · · 1
x0 x1 · · · xn

· · · · · · · · · · · ·
xn

0 xn
1 · · · xn

n

















H0

H1

· · ·
Hn

















b − a
(b2 − a2)/2

· · ·
(bn+1 − an+1)/(n + 1)









This matrix is the transpose of the Vandermonde matrix and hence is nonsingular. So the
Hjs are uniquely determined.

Note that if these equations hold, then if Pn(x) =
∑n

k=0 ckx
k,

∫ b

a

Pn(x) dx =
n

∑

k=0

ck

∫ b

a

xk dx =
n

∑

k=0

ck

n
∑

j=0

Hjx
k
j =

n
∑

j=0

Hj

n
∑

k=0

ckx
k
j =

n
∑

j=0

Pn(xj),

so the formula is exact for all polynomials of degree ≤ n.

We can also consider the xjs as unknowns and try to determine both the xj and Hj to
make the resulting quadrature formula exact for as high degree polynomials as possible. Such
formulas are called Gaussian quadrature formulas.
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10.2. Gaussian quadrature formulas. If we try the method of undetermined coefficients
to get such formulas, we obtain the equations

∫ b

a

xk dx = (bk+1 − ak+1)/(k + 1) =
n

∑

j=0

Hjx
k
j , k = 0, 1, . . . .

There are now 2n + 2 unknowns, so we could take 2n + 2 equations. For example, when
n = 1, we seek to determine x0, x1, H0, H1 satisfying:

b − a = H0 + H1, (b2 − a2)/2 = H0x0 + H1x1 (b3 − a3)/3 = H0x
2
0 + H1x

2
1,

(b4 − a4)/4 = H0x
3
0 + H1x

3
1.

However, the equations are now nonlinear, so it is not clear whether this system will have a
solution, and even if it does, obtaining the solution is not simple.

We instead use a different approach using the idea of orthogonal polynomials. It is conve-
nient to consider a slightly more general problem, i.e., we introduce a fixed weight function
w(x) and look for a formula of the form

∫ b

a

w(x)f(x) dx =
n

∑

j=0

Hjf(xj) + E.

We assume that w(x) is continuous on (a, b) and w(x) > 0, except at most a set of isolated
values. The advantages of this formulation and special choices of w(x) will be discussed
later. Obviously, w(x) ≡ 1 reduces to the original problem. We also allow a and b to be
infinite, as well as finite.

10.3. Orthogonal polynomials. Define (f, g) =
∫ b

a
w(x)f(x)g(x) dx. One can show that

(·, ·) is an inner product on the space

V = {f : f ∈ C0(a, b),

∫ b

a

w(x)f 2(x) dx < ∞}.

That is, we have the properties:

(f, g) = (g, f), (f + g, h) = (f, h) + (g, h), (λf, g) = λ(f, g), λ ∈ R,

(f, f) ≥ 0, (f, f) = 0 ⇐⇒ f = 0.

We can also define the norm of f , ‖f‖ =
√

(f, f).

We say f and g are orthogonal if (f, g) = 0. Then a set f1, · · · , fn is an orthogonal set
of functions if (fi, fj) = 0, i 6= j. A set f1, · · · , fn is orthonormal if f1, · · · , fn is orthogonal
and (fi, fi) = 1, i = 1, . . . , n.

In the following discussion, we let Φ0(x), Φ1(x), · · · be a set of polynomials satisfying (i)
Φj(x) is of degree j and (ii) (Φj, Φk) = 0, j 6= k (i.e., we have a set of orthogonal polynomials).

Algorithm for constructing a set of orthogonal polynomials (for a given inner product):
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Theorem 10. (Lanczo’s Orthogonalization theorem) Let

Φ0 = 1, Φ1 = x − α1, Φk = xΦk−1 − αkΦk−1 − βkΦk−2, k = 2, 3, · · · ,

where

γk = (Φk, Φk) = (xk, Φk), k = 0, 1, . . . , αk = (xΦk−1, Φk−1)/γk−1, k = 1, 2, . . . ,

βk = (xΦk−1, Φk−2)/γk−2 = γk−1/γk−2, k = 2, 3, . . . .

Then Φ0, Φ1, . . . are an orthogonal set of polynomials.

Remark: In general, orthogonal polynomials are unique to within multiplication by non-
zero constants, so you may find slightly different variations in other sources.

Remark: We are assuming a fixed inner product. If the weight function w(x) or the
limits of integration a or b are changed, then we have a new inner product and hence a new
set of orthogonal polynomials.

Example: a = −1, b = 1, w = 1, Φ0(x) = 1, Φ1(x) = x, Φ2(x) = x2 − 1/3.

A key property of orthogonal polynomials is the following.

Lemma 2. Φk(x) has k real distinct zeroes lying in (a, b).

10.4. Construction of Gaussian quadrature formulas. Our main result is the following
theorem.

Theorem 11. There exist abscissas x0, · · · , xn and weights H0, · · · , Hn such that
∫ b

a

w(x)P (x) dx =
n

∑

j=0

HjP (xj)

for all polynomials P (x) of degree ≤ 2n+1 if and only if the xj are the zeroes of Φn+1. Then
the constants Hj are given by the formula

Hj =

∫ b

a

w(x)Lj,n(x) dx, where Lj,n(x) =
n

∏

i=0

i6=j

(x − xi)/(xj − xi).

Example: a = −1, b = 1, w = 1, n = 1, x0, x1 roots of Φ2 = x2 − 1/3, i.e., ±1/
√

3. Then

H0 =

∫ 1

−1

x − 1/
√

3

−1/
√

3 − 1/
√

3
dx = 1, H0 =

∫ 1

−1

x + 1/
√

3

1/
√

3 + 1/
√

3
dx = 1.

We next derive a formula for the error in this approximation.

Theorem 12. If the xj and Hj are defined as in Theorem (11), and if f(x) ∈ V satisfies
f (2n+2) is continuous in (a, b), then for some ξ ∈ (a, b),

E =

∫ b

a

f(x) dx −
n

∑

j−0

Hjf(aj) =
γn+1

(2n + 2)!
f (2n+2)(ξ).
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Proof. Denote by Q(x) the polynomial of degree ≤ 2n + 1 which solves the Hermite inter-
polation problem Q(xi) = f(xi), Q′(xi) = f ′(xi), i = 0, . . . , n. By Theorem (11), the Gauss
quadrature formula is exact for Q(x), i.e.,

∫ b

a

w(x)Q(x) dx =
n

∑

j=0

HjQ(xj) =
n

∑

j=0

Hjf(xj).

Hence, by the error formula for polynomial interpolation,

E =

∫ b

a

w(x)f(x) dx −
n

∑

j=0

Hjf(xj) =

∫ b

a

w(x)[f(x) − Q(x)] dx

=

∫ b

a

w(x)f [x0, x0, x1, x1, · · · , xn, xn, x]
n

∏

j=0

(x − xj)
2 dx

=
f (2n+2)(ξx)

(2n + 2)!

∫ b

a

w(x)
n

∏

j=0

(x − xj)
2 dx =

f (2n+2)(ξx)

(2n + 2)!

∫ b

a

w(x)Φ2
n+1(x) dx,

where we have used the fact that Φn+1 is the unique polynomial of degree n with leading
coefficient equal to one, with zeros at x0, . . . , xn. �

Example: Example: a = −1, b = 1, w = 1, n = 1.

γ2 = (x2, Φ2) =

∫ 1

−1

x2(x2 − 1/3) dx = 8/45, E =
γn+1

(2n + 2)!
f (2n+2)(ξ) =

8/45

(4)!
f (4)(ξ).

10.5. Examples of orthogonal polynomials. We next present standard sets of orthog-
onal polynomials corresponding to different choices of weight functions w(x) and limits of
integration a and b.

(i) a = −1, b = 1, w(x) ≡ 1. Legendre polynomials. The corresponding quadrature
formula is called the Legendre-Gauss quadrature formula.

(ii) a = 0, b = ∞, w(x) = e−x. Laguerre polynomials.

(iii) a = −1, b = 1, w(x) = 1/
√

1 − x2. Chebyshev polynomials.

(iv) a = −∞, b = ∞, w(x) = e−x2

. Hermite polynomials.

There are several advantages to including a weight function w(x). When either or both
a and b are infinite, it is convenient to choose w(x) to insure convergence of the integral
of w(x)f(x), where f(x) is a polynomial of arbitrary degree (as in (ii) and (iii) above). In
singular integrals, e.g., with terms like 1/

√
1 − x2, it is convenient to have formulas and error

terms that do not depend on these terms.


