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12. Numerical solution of Ordinary Differential Equations: Background

Consider the initial value problem (IVP) for a first order ordinary differential equation:

dy/dx = f(x, y), y(x0) = y0.

The following theorem gives sufficient conditions for existence and uniqueness of a solution.

Theorem 13. Let f(x, y) satisfy the following conditions:

(A) f(x, y) is defined and continuous in the strip x0 ≤ x ≤ b, −∞ < y < ∞, where x0

and b are finite.

(B) There exists a constant L such that for any x ∈ [x0, b] and any two numbers y and y∗,
|f(x, y) − f(x, y∗)| ≤ L|y − y∗|.

Then given any number y0, there exists exactly one function y(x) satisfying: (i) y(x)
is continuous and differentiable on [x0, b], (ii) y′(x) = f(x, y(x)), x ∈ [x0, b], and (iii)
y(x0) = y0, i.e., the IVP has a unique solution.

Note that by the Mean Value Theorem, if f is differentiable with respect to y, then for
some point z,

f(x, y) − f(x, y∗) =
∂f

∂y
(x, z)(y − y∗).

Hence, if |∂f/∂y(x, z)| ≤ L for all x0 ≤ x ≤ b and −∞ < z < ∞, condition (B) will be
satisfied.

We next consider an example for which there is more than one solution to the differential
equation; in fact there are an infinite number of solutions.

Example: Consider the IVP y′(x) = y1/3, y(0) = 0 for x ≥ 0. Then for an arbitrary
positive number x0, the functions

y(x) = 0, 0 ≤ x < x0, y(x) = ±[(2/3)(x − x0)]
3/2, x ≥ x0,

are continuous, differentiable, and are solutions of the IVP. Note that in this case, if we
try to satisfy condition (B), where y∗ = 0 and y is an arbitrary positive number, then we
would need to find a constant L such that y1/3 ≤ Ly, i.e., y−2/3 ≤ L. But since as y → 0,
y−2/3 → ∞, this is not possible. So there is no contradiction to the uniqueness theorem.

It is also possible to view y as a vector with N components, so that the IVP represents a
first order system of odes. One way to treat higher order odes is to reduce them to a first
order system by introducing additional variables:

Example: d2y/dx2 = f(x, y, dy/dx). Set z = dy/dx. Then dz/dx = f(x, y, z) and we
obtain the first order system:

d

dx

(

y
z

)

=

(

z
f(x, y, z

)

=

(

f1(x, y, z)
f2(x, y, z)

)

.



50 MATH 373 LECTURE NOTES

12.1. Euler’s method. Our numerical schemes will seek approximations to the solution
y(x) at a sequence of points xi, i.e., we will approximate y(xi) by a number yi. We begin by
discussing the simplest method, i.e., Euler’s method. Set y0 = y(x0) and define

yn+1 = yn + hnf(xn, yn), n = 0, 1, . . . ,

where hn = xn+1 − xn.

One motivation of this method is that we have approximated the derivative (dy/dx)(xn)
by the forward difference approximation (y(xn+1) − y(xn))/(xn+1 − xn) and so:

y(xn+1) ≈ y(xn) + hnf(xn, y(xn)).

We then define our approximations yn as the value that restores equality, i.e., yn+1 = yn +
hnf(xn, yn).

Another motivation for the method is to expand the solution in a Taylor series expansion
and neglect higher order terms, i.e.,

y(xn + hn) = y(xn) + hny
′(xn) + O(h2

n)

= y(xn) + hnf(xn, y(xn)) + O(h2
n) ≈ y(xn) + hnf(xn, y(xn)).

Example: y′ = y y(0) = 1. Then Euler’s method, using a constant step size hn = h,
is: yn+1 = yn + hyn = (1 + h)yn. Hence y0 = 1, y1 = 1 + h, y2 = (1 + h)y1 = (1 + h)2, and
yn = (1 + h)n.

We next consider the convergence of Euler’s method. Expanding the solution y(x) in a
Taylor series, we have

y(xn+1) = y(xn) + hnf(xn, y(xn)) + (h2
n/2)y′′(ξn), xn ≤ ξn ≤ xn+1.

Neglecting any roundoff errors, the approximation given by Euler’s method satisfies:

yn+1 = yn + hnf(xn, yn).

Let en = y(xn) − yn. Note e0 = 0. Subtracting equations, we get

en+1 = en + hn[f(xn, y(xn)) − f(xn, yn)] + (h2
n/2)y′′(ξn),

Hence

|en+1| ≤ |en| + hn|f(xn, y(xn)) − f(xn, yn)| + (h2
n/2)|y′′(ξn)|

≤ |en| + hnLen + h2
nM2/2 ≤ (1 + hnL)|en| + h2

nM2/2,

where we assume that max |y′′(x)| ≤ M2. Consider the case when hn = h for all n. Then

|e1| ≤ h2M2/2, |e2| ≤ (1 + hL)|e1| + h2M2/2 ≤ [1 + (1 + hL)]h2M2/2,

|e3| ≤ (1 + hL)|e2| + h2M2/2 ≤ [1 + (1 + hL) + (1 + hL)2]h2M2/2.

Using the fact that
∑n−1

i=0 ri = (1 − rn)/(1 − r), we get

|en| ≤ [1 + (1 + hL) + (1 + hL)2 + · · · (1 + hL)n−1]h2M2/2 ≤ [(1 + hL)n − 1]hM2/(2L).
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Observing that ex = 1 + x + eξx2/2 ≥ 1 + x for all x, we see that 1 + hL ≤ ehL and hence
(1 + hL)n ≤ enhL = e(xn−x0)L. Thus, we get the error estimate:

|en| ≤
hM2

2L
[e(xn−x0)L − 1],

so the error bound is O(h). This bound is quite pessimistic and not a realistic way to
determine a value of h to guarantee a given accuracy. It also requires a bound on y′′.

We now consider what this result says about convergence of Euler’s method, and first
what we mean by convergence in this context.

Let x be a point in the interval [x0, b] and let y(x) denote the true solution of the IVP at
the point x. For each value of the step size h, we will have an approximation to y(x) that
we denote by yh

n, where n will be determined by the equation x − x0 = nh. Thus, as h is
decreased, the value of n for which yn denotes the approximation to y(x) will also change.
So for convergence, we want:

lim
h→0

n→∞

nh=x

yh
n = y(x).

Example: For x0 = 0, x = 1/2, and the sequence h = 1/4, 1/8, 1/16, 1/32, we look for the

convergence of y
1/4
2 , y

1/8
4 , y

1/16
8 , y

1/32
16 .

Suppose in the error estimate for Euler’s method, we keep xn = x fixed, i.e., we choose n
so that nh = x − x0 and let h → 0. Then

|y(x) − yh
n| ≤

hM2

2L
[e(x−x0)L − 1] =⇒ lim

h→0

n→∞

nh=x

|y(x) − yh
n| = 0,

so we have convergence of the method as h → 0.


