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12.2. Taylor series methods. Consider the Taylor series of y(x), the solution of the IVP,
about x = z,:
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Now y'(z) = f(z,y(z)), so
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= fa(@,y(2)) + fy(z, y(@)) f (2, y(2)).

y'(x) = f'(w,y(2) = %f(% y(@)) = folz,y(2)) + fy (2, y(x))

In general,
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Hence, if y(x,) were known, we could compute an approximation to y(x, + h) by using the
truncated Taylor series:
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i.e., if we denote by v, the approximation to y(z,), we can define the Taylor algorithm of
order k as the sequence of computations
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where
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Note: Euler’s method is the Taylor algorithm of order 1.

Example: We wish to solve the IVP 3/ = 1/2% —y/x—4?, y(1) = 2 by the Taylor algorithm
of order 2. Now

and
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Then
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where f’(z,y) defined above.



MATH 373 LECTURE NOTES 53

Note we can also compute f'(x,y) directly, remembering that y is a function of x, i.e.,
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Definition: The local truncation error for the Taylor series method of order £ is defined
by:
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The local truncation of Euler’s method is h%y?(&,)/2.

The Taylor algorithm of order £ is an example of a one-step method, i.e, the value of y,, 11
only depends on one past value, y,,. One-step methods have the form

Ynt1 = Yn + h® (2, Yn), n=0,1,...,
Analogously to the Taylor series methods, we define the Local Truncation Error of such
methods to be

LTE = y(xn—I—l) - y(xn) - h(I)(l’n, y(xn»
Then we have the following result giving a bound on the global error.

Theorem 14. If |®(z,u) — ®(z,v)| < Llu —v| fora <z <b, 0 < h < hy and all u,v and
if the local truncation is O(hP*), then for any x, = xo + nh € [xo,b),
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The proof of this result is essentially identical to the proof of the error bound for Euler’s
method.

Although Taylor series methods become increasingly more accurate as k increases, their
major disadvantage is that they require calculation of high derivatives of the function f.



