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13. Convergence of multistep methods

Theorem 15. A necessary condition for the convergence of linear multistep method is that

the method be consistent, i.e.,

1 =

p∑

i=0

ai, 1 = −

p∑

i=0

iai +

p∑

i=−1

bi.

Proof. If the method is convergent, then it is convergent for the IVP y′ = 0, y(0) = 1, whose
exact solution is y(x) = 1. For this problem, the general linear multistep method becomes
yn+1 =

∑p

i=0
aiyn−i. Let the starting values y0, . . . yp be exact, i.e., equal to 1. Since the

method is convergent, we must have that yh
n → 1 as h → 0, n → ∞, and nh = x. Hence,

letting n → ∞ in the expression yn+1 =
∑p

i=0
aiyn−i, we get 1 =

∑p

i=0
ai.

To establish the second equality, we consider the IVP y′ = 1, y(0) = 0, whose exact
solution is y(x) = x. The difference equation is now yn+1 =

∑p

i=0
aiyn−i + h

∑p

i=−1
bi.

Consider the sequence yn = nhA, n = 0, 1, . . . ,, where

A =

∑p

i=−1
bi

1 +
∑p

i=0
iai

.

We will first show that the sequence {yn} is a solution of the difference equation. To see
this, we compute

p∑

i=0

aiyn−i + h

p∑

i=−1

bi =

p∑

i=0

ai(n − i)hA + h

p∑

i=−1

bi =

p∑

i=0

ai(n − i)hA + hA(1 +

p∑

i=0

iai)

= hA + hAn

p∑

i=0

ai = (n + 1)hA = yn+1,

where we have used the first identity. We next observe that this sequence also satisfies the
condition that limh→0 yn = 0, n = 1, 2, . . . p. Since the method is convergent, yh

n → x as
h → 0, n → ∞, and nh = x, i.e., nhA = x for nh = x. Hence A = 1, so the second equality
is established. �

Definition: 1st and 2nd characteristic polynomial of a multistep method:

ρ(z) = zp+1 −

p∑

i=0

aiz
p−i, σ(z) =

p∑

i=−1

biz
p−i.

The linear multistep method is consistent if ρ(1) = 0 and ρ′(1) = σ(1). The first identity is
obvious. The second implies

(p + 1) −

p∑

i=0

(p − i)ai =

p∑

i=−1

bi.
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Hence

p(1 −

p∑

i=0

ai) + 1 −

p∑

i=0

(−i)ai −

p∑

i=−1

bi = 0.

Since the first term in the sum is zero, then so is the second.

Definition: The linear multistep method is said to be zero-stable (satisfy the root condition)
if no root of the characteristic polynomial ρ(z) has modulus greater than one and if every
root of modulus one is simple.

Theorem 16. A necessary condition for convergence of a linear multistep method is that it

be zero-stable.

Proof. We only give the proof in the case that the roots of ρ(z) are real simple roots. If the
method is convergent, then it is convergent for the IVP y′ = 0, y(0) = 0, whose solution
is y(x) = 0. For this problem, the method becomes yn+1 =

∑p

i=0
aiyn−i. If the method is

convergent, then by (i), for any x > 0,

lim yh
n = 0, n → ∞, h → 0, nh = x

for all solutions {yn} of the difference equation satisfying (ii) limh→0 yk(h) = 0, k = 0, . . . , p.
We first show that all roots have modulus ≤ 1. Let z = r be a real root of ρ(z). Then
yn = rn is a solution of the difference equation and so is yn = hrn. Note that this second
solution satisfies (ii). Hence, (i) must hold, i.e., limn→∞ xrn/n = 0. Now

lim
n→∞

xrn/n = x lim
n→∞

rn/n = 0

if 0 ≤ |r| ≤ 1. If r > 1, using L’Hospital’s rule,

x lim
n→∞

rn/n = x lim
n→∞

rn ln r/1 = ∞.

A similar result hold if r < −1. Hence for (i) to hold, we require |r| ≤ 1. �

Theorem 17. A necessary and sufficient condition for a linear multistep method to be

convergent is that it be consistent and zero-stable.

Proof. We have shown these conditions are necessary. The proof of sufficiency can be found
in Henrici: Discrete Variable Methods in Ordinary Differential Equations. �


