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13.1. Numerical instability. Question: How high an order can be achieved in a (p+1) step
method if it is consistent and zero-stable? In seeking high order methods, we automatically
get consistency; zero-stability poses a more difficult constraint. Recall that a (p + 1) step
method has (2p + 3) coefficients, p + 1 ais and p + 2 bi’s. If the method is explicit, this
number is reduced by one. Hence, we can expect at most order 2p+2 for an implicit method
and 2p + 1 for an explicit method (recall that if a method has order r, it is exact for all
polynomials of degree ≤ r). However, the following result is known.

Theorem 18. (Dahlquist) No zero-stable p + 1 step linear multistep method can have order
exceeeding p + 2 when p is even or exceeding p + 3 when p is odd.

A zero-stable p+1 step method which has order p+3 is called an optimal method. It can
be shown that for an optimal method, all the roots of ρ(z) lie on the unit circle.

Example: Simpson’s rule: yn+1 = yn−1 + (h/3)[fn+1 + 4fn + fn−1]. Since p = 1, this
is a two-step method. The local truncation error is −(1/90)h5y(5)(ξ). It is a fourth order
method, so Simpson’s rule is an optimal method. However, we shall see that Simpson’s
rule has computational disadvantages that make it unsuitable as a general purpose method.
These disadvantages are shared by all optimal order methods. Hence, we will not choose the
coefficients in a multistep method solely to achieve maximum order.

To understand this issue, consider the problem y′ = −y, y(0) = 1, whose exact solution
is y(x) = e−x. We apply the midpoint rule method yn+1 = yn−1 + 2hfn, which in this case
becomes yn+1 + 2hyn − yn−1 = 0. Since this is a linear difference equation with constant
coefficients, we solve it by first computing the roots of the characteristic polynomial ρ(z) =
z2 + 2hz − 1 = 0. Then z = −h ±

√
1 + h2, so the general solution has the form

yn = C1(−h +
√

1 + h2)n + C2(−h −
√

1 + h2)n.

Set y0 = 1 and leave y1 arbitrary for the moment and solve for C1 and C2.

y0 = 1 = C1 + C2, y1 = C1(−h +
√

1 + h2) + C2(−h −
√

1 + h2).

Then

C1 =
1

2
+

y1 + h

2
√

1 + h2
, C2 =

1

2
− y1 + h

2
√

1 + h2
.

Inserting this result, we get

yn =

(

1

2
+

y1 + h

2
√

1 + h2

)

(−h +
√

1 + h2)n +

(

1

2
− y1 + h

2
√

1 + h2

)

(−h −
√

1 + h2)n.

Observe that | − h −
√

1 + h2| > 1, so that unless we choose y1 so that 1
2
− y1+h

2
√

1+h2
= 0,

limn→∞ = ±∞. The other term | − h +
√

1 + h2| = |1 − h + O(h2)| < 1 and hence
(−h +

√
1 + h2)n → 0 as n → ∞.

The above is an example of numerical instability. The true solution e−x → 0 as x = nh →
∞, while for fixed h the approximate solution → ∞ as n → ∞.
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However, if we consider the convergence of the sequence {yh
n} as h → 0, n → ∞ and

x = nh and make the assumption that limh→0 yh
1 = y0 = 1, then

lim
h→0

(

1

2
+

y1 + h

2
√

1 + h2

)

= 1, lim
h→0

(

1

2
− y1 + h

2
√

1 + h2

)

= 0.

Furthermore, for x = nh,

lim
h→0,n→∞

(−h +
√

1 + h2)n = lim
h→0

[(−h +
√

1 + h2)1/h]x.

Let y = limh→0[(−h +
√

1 + h2)1/h]. Then

ln y = lim
h→0

[ln(−h +
√

1 + h2)/h] = lim
h→0

2h
2
√

1+h2
− 1

√
1 + h2 − h

= −1.

Hence, ln y = −1 so y = e−1. Then

lim
h→0,n→∞

C1(−h +
√

1 + h2)n = e−x.

Thus, the first part of the solution of the difference equation gives an approximation to the
true solution of the differential equation. One can easily show that |(−h−

√
1 + h2)n| ≤ ex.

Hence, the second term is converging to zero, so the approximate solution is converging to
the true solution.

To summarize, one root of the characteristic polynomial gives a solution that approximates
the true solution. A second root gives a parasitic solution which for fixed h eventually blows
up to give a bad overall approximation. Since the method converges, for any x and ǫ, one
can find a value of h such that |yh

n − e−x| < ǫ. However, since the parasitic solution grows
like ex, this h would have to be impractically small for any reasonable size x.

13.2. Strong and weak stability. To formalize the stability problem discussed above, we
now define several concepts of stability that seek to differentiate between methods which
exhibit numerical instability and those that do not. These definitions usually refer to the
difference equations obtained by applying the multistep method to the model problem:

y′ = λy, y(x0) = y0,

whose exact solution is y(x) = y0e
λ(x−x0). In this case, the resulting difference equation is:

yn+1 =

p
∑

i=0

aiyn−i + h

p
∑

i=−1

biλyn−i,

which may be rewritten as:

yn+1[1 − hλb−1] =

p
∑

i=0

[ai + hλbi]yn−i.

This is a linear constant coefficient difference equation. The associated characteristic poly-
nomial is:

zp+1[1 − hλb−1] =

p
∑

i=0

[ai + hλbi]z
p−i.
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When h = 0, this becomes just ρ(z) = 0. In general, it is ρ(z) − hλσ(z) = 0.

We previously defined zero-stability as requiring that all roots of ρ(z) have modulus ≤ 1
and all roots of modulus one to be simple. Since we want our method to be consistent
(necessary for convergence), z = 1 is always a root of ρ(z) = 0.

Definition: The roots of ρ(z) of modulus one are called essential roots. The root z = 1 is
called the principal root. The roots of ρ(z) of modulus < 1 are called nonessential roots.

Definition: A linear multistep method is strongly stable if all roots of ρ(z) are ≤ 1 in
magnitude and only one root has magnitude one. If more than one root has magnitude one,
the method is called weakly or conditionally stable. Note, we still require only simple roots
of magnitude one. Also, note these definitions refer to the case h = 0.

Returning to the example yn+1 = yn−1 + 2hfn, we have ρ(z) = z2 − 1, so the roots are
z = ±1. Hence, this is a weakly stable method. For the specific problem y′ = −y, y(0) = 1,
the roots of the difference equation were

z1 = −h +
√

1 + h2, z2 = −h −
√

1 + h2.

The problem was that since |z2| > 1, the corresponding parasitic solution blew up. The
basic idea of strong stability is that since the roots of a polynomial are continuous functions
of the coefficients, for hλ near zero, the roots of ρ(z) − hλσ(z) = 0 are near the roots of
ρ(z) = 0. If the method is strongly stable, all extraneous roots have magnitude < 1, so for
|hλ| small enough, all roots of ρ(z) − hλσ(z) = 0 will also have magnitude < 1. Hence the
parasitic solution corresponding to this root will decay as n → ∞, instead of blowing up to
ruin the approximate solution. Other definitions of stability try to more precise in defining
the values of hλ for which the parasitic solutions remain bounded.

13.3. Absolute and relative stability. The following definitions of stability attempt to
give a more precise characterization of the values of hλ for which parasitic solutions die out.

Definition: A linearly multistep method is said to be absolutely stable for those values of
hλ for which all roots rs of π(r, hλ) = ρ(r) − hλσ(r) = 0 satisfy |rs| ≤ 1 (and if |rs| = 1,
then rs is simple).

In other words, all solutions of the test problem

yn+1[1 − b−1hλ] =

p
∑

i=0

(ai + hλbi)yn−i

remain bounded as n → ∞. If the method is absolutely stable for all hλ ∈ (α, β), the
interval (α, β) is called the interval of absolute stability.

Example: midpoint rule yn+1 = yn−1+2hλyn. The characteristic polynomial is r2−2hλr−
1 = 0, so r = hλ ±

√
h2λ2 + 1. Clearly if hλ < 0, then |hλ −

√
h2λ2 + 1| > 1 and if hλ > 0,

then |hλ+
√

h2λ2 + 1| > 1. Hence, this method is only absolutely stable for hλ = 0, so there
is no interval of absolute stability.
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The definition of absolutely stable determines an interval in which parasitic solutions do
not grow. However, if the true solution is increasing, i.e., λ > 0, then it is not a problem if
parasitic solutions grow, provided they do not grow faster than the true solution.

Defintion: A linear multistep method is said to be relatively stable for those values of hλ
for which all roots rs of π(r, hλ) satisfy |rs| ≤ |r0, and if |rs| = |r0|, then rs is simple. Here r0

is the principle root, i.e., the root with the property that limh→0 r0(h) = 1). If the method
is relatively stable for all hλ ∈ (α, β), the interval (α, β) is called the interval of relative
stability.

Example: midpoint rule r0 = hλ+
√

h2λ2 + 1, r1 = hλ−
√

h2λ2 + 1. For relative stability,
we require |hλ −

√
h2λ2 + 1| ≤ |hλ +

√
h2λ2 + 1|, i.e., hλ ≥ 0. So the interval of relative

stability is [0,∞).

Remark: There are various similar defintitions that make slight changes (e.g., using <
instead of ≤ and not requiring simple roots). Note that this definition does not apply to
one-step methods since there is only one root of ρ(r), but absolute stability definition does
apply.

Example: Euler’s method: yn+1 = yn +hfn. When f(x, y) = λy, we get yn+1 = yn +hλyn,
so r0 = 1 + hλ. For absolute stability, we need −1 ≤ 1 + hλ ≤ 1, i.e., −2 ≤ hλ ≤ 0. Hence,
interval of absolute stability is [−2, 0].

Example: Trapezoidal rule yn+1 = yn + (h/2)(fn+1 + fn). When f(x, y) = λy, we get
yn+1 = yn + (hλ/2)(yn+1 + yn). Hence, (1 − hλ/2)yn+1 = (1 + hλ/2)yn. So the only root
of the characteristic polynomial is r0 = (1 + hλ/2)/(1 − hλ/2). For absolute stability, we
need |r0| ≤ 1, i.e., hλ ≤ 0. This is the best one can obtain, since one can show that hλ > 0
cannot belong to the interval of absolute stability.


