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2.2. Newton’s method for systems of equations. We consider only the case of two
equations, i.e., given two functions f(z,y) and g(z,y), we wish to find values z = s, y = ¢
that simultaneously satisfy the equations

f(s,t) =0, g(s,t) = 0.

To obtain Newton’s method for this system, we follow the procedure used for a single equa-
tion, i.e., we expand these functions in a Taylor series (where the Taylor series needed is the
one in two variables). If we already have an approximation (z,,¥,), then we use a Taylor
series expansion about this point, i.e., for some numbers &, 1y, &, 12, we have
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As in one variable, if we assume that z,, is close to s and vy, is close to ¢, then we expect the
quadratic terms in s — x,, and t — y,, to be small compared to the linear terms. Neglecting
these terms, we define (2,41, ¥n+1) as the solution of the linear system of equations
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Newton’s method: Starting from an initial approximation (xo,%o), define a sequence of
approximations (z,,y,) by the iteration scheme.

Tn+1 = T + 5m Yn+1 = Yn + €n,

where (0, €,) is the solution of the linear system
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3. FIXED POINT ITERATION:

To study the convergence of some of these methods, we next consider a scheme called
fixed point iteration. In this method, instead of seeking a root of f(x) = 0, we look for a
fixed point of a function g(x), i.e., a value of x satisfying x = g(x). We choose g(z) so that
fixed points of g are roots of f. One problem is that there are infinite number of ways we
can do this. As we shall see, it will be important to choose ¢ so that it has certain desirable
properties.
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Example: f(zr) = 2> — z — 2. Then some choices of g(z) are: a) f(z) = z* — 2, (b)
g(z) = V2+uzx, (c) g(x) =1+ 2/x, (d) g(x) = z — (2> — x — 2)/m, where m > 0 is a
constant.

Note that if we define g(x) = = — f(z)/f'(x), then a simple root z* of f (i.e., f'(z*) # 0)
will be a fixed point of g(z).

Fixed point iteration algorithm: Given a starting guess xy, we define the iteration
Tpi1 = g(2,). We then have the following convergence result for this iteration scheme.

Theorem 1. Let I = [a,b], where a and b are finite and assume that g satisfies the following
conditions: (i) g is continuous on I and differentiable on (a,b), (it) g(x) € I for all xz € I,
and (iii) There is a constant L, with 0 < L < 1 such that |¢'(z)| < L for all x € (a,b). Then
there is a unique fized point s of g (i.e., s = g(s)) in the interval I and for any choice of
xg € I, the sequence {x,} defined by the iteration x,.1 = g(x,) converges to s.

Proof. To prove existence of a fixed point, we set f(z) = x—g(x). Since by (ii), a < g(a) < b
and a < g(b) <b, f(a) =a—g(a) <0 and f(b) =b— g(b) > 0. Since g is continuous on
I, so is f. Hence, by the Intermediate Value Theorem, there exists at least one point s in
[a, b] such that f(s) =0, i.e., s = g(s). To see there can be only one such point, we suppose
there are two fixed points s; and ss. Then using (iii), and the Mean Value Theorem, there
exists a point ¢ € (a, b) such that

|52 = s1] = [g(s2) — g(s1)| = |g'(c)(s2 — s1)| < |g'(¢)[|s2 — s1] < L|sz — s1].

Since L < 1, we must have so = s;. To establish convergence, we again use the Mean Value
Theorem to write

|s—an| = |g(s)—g(zn-1)| = |g'(cn) (s =2p_1)| < Lls—2p 1] < L2|S_xn—2| <... < L' s—mxl.
Since L < 1, lim,, .o, L™ = 0 and so lim,, .o |s — z,| =0, i.e., lim, .o x, = s. O

We can also derive error bounds on the approximation that do not depend on the unknown
solution.

Corollary 1.
|s — z,| < L"max{b — xg, g — a}.

From the proof of the theorem, we know that |s — z,| < L"|s — x¢|. Since both 2y and s
belong to I, either s € [a, x| or s € [z, b]. Hence, |s — x| < L™ max{b — x¢,xo — a}.
It is also possible to establish the following result.

Corollary 2.
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Note that the rate of convergence of the method depends on the constant L. The smaller
the value of L, the faster the convergence.
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Example: g(z) = (#* —1)/3, I = [—1,1]. (i) Since g is a polynomial, it is continuous and
differentiable everywhere. (ii) We find the maximum and minimum of g(z) on I = [—1,1].
Now ¢'(x) = 2x/3 = 0 only for x = 0. Hence the max and min can occur only at z = —1,0, 1.

Since g(—1) =0, g(1) = 0 and ¢(0) = —1/3, we get —1/3 < g(z) < 0. Hence g(z) € [-1, 1]
forall x € [—1, 1]and (ii) is satisfied. (iii) is also satisfied since |¢'(x)| = |22/3| <2/3=L < 1
for # € [—1,1]. Hence, the iteration z,; = (2 — 1)/3 converges to the unique fixed point
of g in [-1,1].

Example: Suppose we wish to calculate the root s = 2 of the function f(z) = 2% — 2 — 2
by fixed point iteration. If we define g(x) = 2* — 2, then ¢’(z) = 2z and so |¢/(z)| > 1 for
x > 1/2. Hence assumption (iii) is not satisfied for any interval (a,b) containing the root
s = 2 and the convergence theorem does not apply.

If we try g(z) = V2 + z, then ¢'(z) = 1/(2v/2 + x). Now for z > 0, g(x) > 0 and
0<d(x)<1/(2v2) < 1.

Also for 0 < = < 7, g(x) = vV2+2 < 2+7 = 3. Hence, with I = [0,7], all the
assumptions of the theorem are satisfied and so the iteration x,,.; = /2 4 x,, converges to
2 for any z( € [0,7].




