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2.2. Newton’s method for systems of equations. We consider only the case of two
equations, i.e., given two functions f(x, y) and g(x, y), we wish to find values x = s, y = t
that simultaneously satisfy the equations

f(s, t) = 0, g(s, t) = 0.

To obtain Newton’s method for this system, we follow the procedure used for a single equa-
tion, i.e., we expand these functions in a Taylor series (where the Taylor series needed is the
one in two variables). If we already have an approximation (xn, yn), then we use a Taylor
series expansion about this point, i.e., for some numbers ξ1, η1, ξ2, η2, we have

0 = f(s, t) = f(xn, yn) +
∂f

∂x
(xn, yn)(s − xn) +

∂f

∂y
(xn, yn)(t − yn)

+
1

2

∂2f

∂x2
(ξ1, η1)(s − xn)2 +

∂2f

∂x∂y
(ξ1, η1)(s − xn)(t − yn) +

1

2

∂2f

∂y2
(ξ1, η1)(t − yn)2,

0 = g(s, t) = g(xn, yn) +
∂g

∂x
(xn, yn)(s − xn) +

∂g

∂y
(xn, yn)(t − yn)

+
1

2

∂2g

∂x2
(ξ2, η2)(s − xn)2 +

∂2g

∂x∂y
(ξ2, η2)(s − xn)(t − yn) +

1

2

∂2g

∂y2
(ξ2, η2)(t − yn)2.

As in one variable, if we assume that xn is close to s and yn is close to t, then we expect the
quadratic terms in s − xn and t − yn to be small compared to the linear terms. Neglecting
these terms, we define (xn+1, yn+1) as the solution of the linear system of equations

∂f

∂x
(xn, yn)(xn+1 − xn) +

∂f

∂y
(xn, yn)(yn+1 − yn) = −f(xn, yn),

∂g

∂x
(xn, yn)(xn+1 − xn) +

∂g

∂y
(xn, yn)(yn+1 − yn) = −g(xn, yn).

Newton’s method: Starting from an initial approximation (x0, y0), define a sequence of
approximations (xn, yn) by the iteration scheme.

xn+1 = xn + δn, yn+1 = yn + ǫn,

where (δn, ǫn) is the solution of the linear system
(

fx(xn, yn) fy(xn, yn)
gx(xn, yn) gy(xn, yn)

) (

δn

ǫn

)

= −
(

f(xn, yn)
g(xn, yn)

)

.

3. Fixed Point Iteration:

To study the convergence of some of these methods, we next consider a scheme called
fixed point iteration. In this method, instead of seeking a root of f(x) = 0, we look for a
fixed point of a function g(x), i.e., a value of x satisfying x = g(x). We choose g(x) so that
fixed points of g are roots of f . One problem is that there are infinite number of ways we
can do this. As we shall see, it will be important to choose g so that it has certain desirable
properties.
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Example: f(x) = x2 − x − 2. Then some choices of g(x) are: a) f(x) = x2 − 2, (b)
g(x) =

√
2 + x, (c) g(x) = 1 + 2/x, (d) g(x) = x − (x2 − x − 2)/m, where m > 0 is a

constant.

Note that if we define g(x) = x − f(x)/f ′(x), then a simple root x∗ of f (i.e., f ′(x∗) 6= 0)
will be a fixed point of g(x).

Fixed point iteration algorithm: Given a starting guess x0, we define the iteration
xn+1 = g(xn). We then have the following convergence result for this iteration scheme.

Theorem 1. Let I = [a, b], where a and b are finite and assume that g satisfies the following
conditions: (i) g is continuous on I and differentiable on (a, b), (ii) g(x) ∈ I for all x ∈ I,
and (iii) There is a constant L, with 0 < L < 1 such that |g′(x)| ≤ L for all x ∈ (a, b). Then
there is a unique fixed point s of g (i.e., s = g(s)) in the interval I and for any choice of
x0 ∈ I, the sequence {xn} defined by the iteration xn+1 = g(xn) converges to s.

Proof. To prove existence of a fixed point, we set f(x) = x−g(x). Since by (ii), a ≤ g(a) ≤ b
and a ≤ g(b) ≤ b, f(a) = a − g(a) ≤ 0 and f(b) = b − g(b) ≥ 0. Since g is continuous on
I, so is f . Hence, by the Intermediate Value Theorem, there exists at least one point s in
[a, b] such that f(s) = 0, i.e., s = g(s). To see there can be only one such point, we suppose
there are two fixed points s1 and s2. Then using (iii), and the Mean Value Theorem, there
exists a point c ∈ (a, b) such that

|s2 − s1| = |g(s2) − g(s1)| = |g′(c)(s2 − s1)| ≤ |g′(c)||s2 − s1| ≤ L|s2 − s1|.
Since L < 1, we must have s2 = s1. To establish convergence, we again use the Mean Value
Theorem to write

|s−xn| = |g(s)−g(xn−1)| = |g′(cn)(s−xn−1)| ≤ L|s−xn−1| ≤ L2|s−xn−2| ≤ . . . ≤ Ln|s−x0|.
Since L < 1, limn→∞ Ln = 0 and so limn→∞ |s − xn| = 0, i.e., limn→∞ xn = s. �

We can also derive error bounds on the approximation that do not depend on the unknown
solution.

Corollary 1.

|s − xn| ≤ Ln max{b − x0, x0 − a}.

From the proof of the theorem, we know that |s − xn| ≤ Ln|s − x0|. Since both x0 and s
belong to I, either s ∈ [a, x0] or s ∈ [x0, b]. Hence, |s − x0| ≤ Ln max{b − x0, x0 − a}.

It is also possible to establish the following result.

Corollary 2.

|s − xn| ≤
Ln

1 − L
|x1 − x0|.

Note that the rate of convergence of the method depends on the constant L. The smaller
the value of L, the faster the convergence.
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Example: g(x) = (x2 − 1)/3, I = [−1, 1]. (i) Since g is a polynomial, it is continuous and
differentiable everywhere. (ii) We find the maximum and minimum of g(x) on I = [−1, 1].
Now g′(x) = 2x/3 = 0 only for x = 0. Hence the max and min can occur only at x = −1, 0, 1.
Since g(−1) = 0, g(1) = 0 and g(0) = −1/3, we get −1/3 ≤ g(x) ≤ 0. Hence g(x) ∈ [−1, 1]
for all x ∈ [−1, 1]and (ii) is satisfied. (iii) is also satisfied since |g′(x)| = |2x/3| ≤ 2/3 = L < 1
for x ∈ [−1, 1]. Hence, the iteration xn+1 = (x2

n
− 1)/3 converges to the unique fixed point

of g in [−1, 1].

Example: Suppose we wish to calculate the root s = 2 of the function f(x) = x2 − x − 2
by fixed point iteration. If we define g(x) = x2 − 2, then g′(x) = 2x and so |g′(x)| > 1 for
x > 1/2. Hence assumption (iii) is not satisfied for any interval (a, b) containing the root
s = 2 and the convergence theorem does not apply.

If we try g(x) =
√

2 + x, then g′(x) = 1/(2
√

2 + x). Now for x ≥ 0, g(x) ≥ 0 and

0 ≤ g′(x) ≤ 1/(2
√

2) < 1.

Also for 0 ≤ x ≤ 7, g(x) =
√

2 + x ≤
√

2 + 7 = 3. Hence, with I = [0, 7], all the
assumptions of the theorem are satisfied and so the iteration xn+1 =

√
2 + xn converges to

2 for any x0 ∈ [0, 7].


