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4. Polynomial Approximation

In many problems occuring in applications, we are confronted with the problem of ap-
proximating an unknown function from various types of information we are given about the
function. A simple example occurs when we have measurements of the function (possibly by
an experiment) at discrete time intervals and want to have an approximation of the function
at times for which we have no measurements. A more complicated situation occurs when we
know that the function we seek satisfies a certain differential equation, but the equation is
not one where an analytical technique can be applied to find its solution. In these cases, we
may seek an approximation to the function by a simple function that can be easily evaluated
on a computer. One reason for the use of polynomials as approximating functions is that
they are easy to evaluate on a computer. Another important reason is that they have good
approximation properties, made more precise in the following theorem.

4.1. Weierstrass Approximation Theorem. If f(x) is continuous on a finite interval
[a, b], then given ǫ > 0, there exists n depending on ǫ and a polynomial Pn(x) of degree ≤ n
such that |f(x) − Pn(x)| ≤ ǫ for all x ∈ [a, b].

The proof uses Bernstein polynomials: These polynomials are defined on the interval
[0, 1] by: Bn(x) =

∑n

k=0

(

n

k

)

xk(1 − x)n−kf(k/n). One can show that limn→∞ Bn(x) = f(x)
uniformly in [0, 1]. If y ∈ [a, b], we can reduce the problem to the interval [0, 1] by the change
of variable x = (y − a)/(b − a). The proof is not constructive in the sense that we do not
know how large n has to be to achieve a given accuracy ǫ. However, the theorem does tell
us we can approximate continuous functions to any accuracy using polynomials.

4.2. Forms of Polynomials. Probably the most familiar way to write a general polynomial
of degree ≤ n is to use the form

Pn(x) = a0 + a1x + · · · + anx
n,

where the ai are arbitary constants. In such a formula, we can think of the ai as the degrees

of freedom of the polynomial, since these the terms we are free to choose in the formula. In
fact, the ai are related to the value of Pn and its deratives at x = 0, i.e.,

a0 = Pn(0), a1 = P ′

n(0), ak = P (k)
n (0)/k!.

Thus, in this formula, the degrees of freedom of the polynomial are P
(k)
n (0)/k!.

This representation of a polynomial is the one used when we write down the first n + 1
terms of the Taylor series expansion of a function f , i.e.,

Tn(x) = f(0) + f ′(0)x + · · · +
f (n)(0)

n!
xn.

Thus, the Taylor polynomial Tn(x) is the polynomial Pn(x) of degree ≤ n for which

Pn(0) = f(0), P ′

n(0) = f ′(0), · · · , P (n)
n (0) = f (n)(0).



MATH 373 LECTURE NOTES 13

If we consider the Taylor series of f about the point x = c, then we are using the polynomial
representation:

Pn(x) = b0 + b1(x − c) + · · · + bn(x − c)n.

In this case, the degrees of freedom bk correspond to constant multiples of the value and
derivatives of Pn at the point x = c, i.e.,

b0 = Pn(c), b1 = P ′

n(c), · · · , bn = P (n)
n (c)/n!,

where

Pn(c) = f(c), P ′

n(c) = f ′(c), · · · , P (n)
n (c) = f (n)(c).

While these two representations of a polynomial of degree ≤ n are useful in some applica-
tion, there are other representations that are more useful in other applications. For example,
a classical problem in data fitting is the following:

4.3. Polynomial interpolation: Given n+1 distinct points x0, · · · , xn and function values
f(x0), · · · , f(xn), find a polynomial Pn(x) of degree ≤ n satisfying Pn(xj) = f(xj), j =
0, 1, . . . , n. We say Pn interpolates f at x0, . . . , xn. If we use the representation Pn(x) =
a0 + a1x + · · · + anx

n, then to determine the ai, we would need to solve the following linear
system of n + 1 equations:

a0 + a1x0 + · · · + anx
n
0 = f(x0)

a0 + a1x1 + · · · + anx
n
1 = f(x1)

· · ·

a0 + a1xn + · · · + anx
n
n = f(xn)

for the n + 1 unknowns a0, · · · , an. Instead, if we start from another representation of a
polynomial, called the Lagrange form, then we can write down the solution immediately.

4.4. Lagrange form of the interpolating polynomial. : Define for k = 0, 1, . . . , n:

Lk,n(x) =
n

∏

j=0

j 6=k

(x − xj)

(xk − xj)
, n ≥ 1, L0,0(x) = 1.

Claim: P (x) =
∑n

k=0 Lk,n(x)f(xk) is a polynomial of degree ≤ n that interpolates f at
x0, . . . , xn. This representation is called the Lagrange form of the interpolating polynomial.

Another way of thinking about this form of a polynomial is that we are writing P (x) =
∑n

k=0 Lk,n(x)P (xk). The functions Lk,n(x) are fixed and the polynomial P (x) is then uniquely
determined by its values P (xk) at the n+1 points x0, . . . , xn. These values P (x0), . . . , P (xn)
are the degrees of freedom of P (x) (in this form of the polynomial), i.e., they are the quantities
we are free to choose that uniquely determine P (x). Once we know we can write any
polynomial in this form, it is then easy to solve the interpolation problem, i.e., we simply
replace P (xk) by f(xk).
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Observe that Lk,n(x) is a product of n monomials in x and hence is a polynomial of degree
≤ n. Taking linear combinations still gives a polynomial of degree ≤ n.

Next: Lk,n(xi) = 0, i 6= k. Lk,n(xi) = 1, i = k. Hence, P (xi) = f(xi).

Uniqueness: Suppose Q(x) is another interpolating polynomial of degree ≤ n. Then
R(x) = P (x) − Q(x) is of degree ≤ n and equals zero at x0, . . . , xn. Since R(x) = 0 at the
distinct points x1, . . . , xn, R(x) has the form R(x) = A(x−x1) · · · (x−xn) for some constant
A. Then R(x0) = 0 implies A = 0, so R(x) = 0.

Note: There exists other polynomials of degree d > n interpolating f at x0, . . . , xn.

Examples: n = 0: P0(x) = f(x0). n = 1: P1(x) = x−x1

x0−x1

f(x0) + x−x0

x1−x0

f(x1).

4.5. Newton form of the interpolating polynomial. One problem with the Lagrange
form of the interpolating polynomial is that if we have already computed Pn−1 and now add
one additional interpolation point, we have to recompute everthing. Thus, we consider a
second form of the interpolating polynomial, known as the Newton form.

Note we can also write:

P1(x) = f(x0) +
f(x1) − f(x0)

x1 − x0

(x − x0).

This is an example of the Newton form of the interpolating polynomial. In general, we
want to write Pn(x) = Pn−1(x)+Qn(x), where Pn−1 interpolates f at x0, . . . , xn−1 and Qn(x)
has a simple form.

By the definitions of Pn and Pn−1, Qn(x) is of degree ≤ n and = 0 at x0, . . . , xn−1. Hence,
Qn(x) = An(x−x0) · · · (x−xn−1) for some constant An. Hence, we need only determine An.

Now f(xn) = Pn(xn) = Pn−1(xn) + Qn(xn). Hence,

An =
f(xn) − Pn−1(xn)
∏n−1

j=0 (xn − xj)

= f(xn) −
n−1
∑

k=0







n−1
∏

j=0

j 6=k

xn − xj

xk − xj






f(xk)/

n−1
∏

j=0

(xn − xj)

=
f(xn)

∏n−1
j=0 (xn − xj)

−

n−1
∑

k=0

f(xk)
∏n−1

j=0

j 6=k

(xk − xj)
·

1

xn − xk

=
n

∑

k=0

f(xk)
∏n

j=0

j 6=k

(xk − xj)
.(4.1)

We refer to An given by this formula as the nth divided difference of f with respect to
x0, . . . , xn and denote it by f [x0, x1, . . . , xn].


