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4.8. Hermite interpolation. The polynomial interpolation problem we have discussed so
far only involves interpolation of the values of a function f at distinct points. It is also
possible to seek a polynomial that interpolates f and some of its derivatives at a set of
points. One example of this that we have already seen is the Taylor polynomial of degree
≤ n about the point x0, i.e.,

Tn(x) = f(x0) + f ′(x0)(x − x0) + · · · +
f (n)(x0)

n!
(x − x0)

n.

This has the property that

Tn(x0) = f(x0), T ′
n(x0) = f ′(x0), T (n)

n (x0) = f (n)(x0),

i.e., Tn interpolates f and its derivatives up to order n at the point x0.

A more general interpolation problem is to find the polynomial of least degree such that

dkP

dxk
(xi) =

dkf

dxk
(xi), i = 0, 1, · · · , n, k = 0, 1, · · · , mi.

Note that we allow the possibility of interpolating a different number (mi) derivatives of f
at different interpolation points.

For this case mi = 1, there is a formula analogous to the Lagrange interpolation formula
discussed previously.

Theorem 5. If f ∈ C1[a, b] and x0, x1, · · ·xn are distinct points in [a, b], then the unique

polynomial of least degree agreeing with f and f ′ at x0, x1, · · ·xn is the Hermite polynomial

of degree ≤ 2n + 1 given by:

H2n+1(x) =
n∑

k=0

Hk,n(x)f(xk) +
n∑

k=0

Ĥk,n(x)f ′(xk),

where

Hk,n(x) = [1 − 2(x − xk)L
′
k,n(xk)]L

2
k,n(x), Ĥk,n(x) = (x − xk)L

2
k,n(x),

and for k = 0, 1, . . . , n:

Lk,n(x) =
n∏

j=0

j 6=k

(x − xj)

(xk − xj)
, n ≥ 1, L0,0(x) = 1.

Moreover, if f ∈ C2n+2[a, b], then there is a point ξ(x) ∈ (a, b), such that

f(x) − H2n+1(x) =
f 2n+2(ξ(x))

(2n + 2)!
(x − x0)

2 · · · (x − xn)2.

Recall that the key property satisfied by Lk,n(x) was Lk,n(xi) = 1 if k = i and Lk,n(xi) = 0

if k 6= i. The analogous properties for Hk,n(x) and Ĥk,n(x) are:

Hk,n(xi) = 1, k = i, Hk,n(xi) = 0, k 6= i, H ′
k,n(xi) = 0, i = 0, . . . , n,

Ĥ ′
k,n(xi) = 1, k = i, Ĥ ′

k,n(xi) = 0, k 6= i, Ĥk,n(xi) = 0, i = 0, . . . , n.
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4.9. Divided differences for repeated points. Recall

f [x0, x1, . . . , xk] =
k∑

i=0

f(xi)∏n
j=0

j 6=i

(xi − xj)
.

Note that f [y0, . . . , yk] = f [x0, . . . , xk] if y0, . . . , yk is any reordering of x0, . . . , xk. So far,
f [x0, . . . , xk] has only been defined when the points x0, . . . , xk are distinct. We now wish to
extend the definition to include the case of repeated points.

Example: k = 1. f [x0, x1] = [f(x1) − f(x0)]/(x1 − x0), x1 6= x0. If f ∈ C1, then
limx0,x1→y f [x0, x1] = f ′(y). So we define f [x0, x1] = f ′(x0) when x0 = x1. In general,
define

f [x0, . . . , xk] =
f (k)(y)

k!
, if x0 = x1 = · · · = xk = y.

With this interpretation, we can still use the Newton formula

Pn(x) =
n∑

i=0

f [x0, . . . , xi]
i−1∏

j=0

(x − xj)

to describe the polynomial of degree ≤ n interpolating f(x) at x0, . . . , xn, even when the
points x0, . . . , xn are not necessarily distinct. The error is still given by the formula

f(x) − Pn(x) = f [x0, . . . , xn, x]
n∏

j=0

(x − xj),

where by the interpolating polynomial we now mean that if the point z appears k + 1 times
among x0, . . . , xn, then

P (j)
n (z) = f (j)(z), j = 0, . . . , k.

Furthermore, if f ∈ Cn+1(a, b) and x0, . . . , xn, x ∈ [a, b], then one can show that

f [x0, . . . , xn, x] =
f (n+1)(ξ)

(n + 1)!

for some ξ satisfying min(x0, . . . , xn, x) ≤ ξ ≤ max(x0, . . . , xn, x).

Example: f(x) = ln x. Calculate f(1.5) by cubic interpolation using the data: f(1) = 0,
f ′(1) = 1, f(2) = 0.693147, f ′(2) = 0.5. Take x0 = 1, x1 = 1, x2 = 2, x3 = 2.

Table 2

Divided difference table

xk f(xk) f[,] f[,,] f[,,,]
1 0

1
1 0 −.306853

.693147 .113706
2 .693147 −0.193147

.5
2 .693147
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Using the divided difference table, we get

P3(x) = f(1) + f [1, 1](x − 1) + f [1, 1, 2](x − 1)2 + f [1, 1, 2, 2](x − 1)2(x − 2)

= 0 + 1(x − 1) + (−.306853)(x − 1)2 + (.113706)(x − 1)2(x − 2).

So P3(1.5) = .409074.

From the error formula, we have ln(x) − P3(x) = f (4)(ξ)(x − 1)2(x − 2)2/4!. Hence,

| ln(1.5) − P3(1.5)| ≤
1

4!
max
1≤ξ≤2

6

ξ4
(.5)4 =

1

64
= 0.015624

The actual error is .00361.

4.10. Runge example. One might infer from the error formula for polynomial interpola-
tion that as one adds more and more interpolation points, one gets a better and better
approximation. This fact is not true in general and depends on how the points are added.

Example: Runge f(x) = 1/(1 + x2), x ∈ [−5, 5]. Set xj = −5 + j∆x, j = 0, 1, . . . , n,
∆x = 10/n. For each n, there is a unique polynomial Pn(x) of degree ≤ n satisfying
Pn(xj) = f(xj). However, |f(x)−Pn(x)| will become arbitrarily large at points in [−5, 5] as
n becomes large. One can show that for n = 2r,

f(x) − Pn(x) =
n∏

j=0

x(x − xj)
f(x)(−1)r+1

∏r

j=0(1 + x2
j)

.

For n = 2,

|f(x) − P2(x)| ≤
|x2(x + 5)(x − 5)

26(1 + x2)
≤ 1,

by looking at the graphs. For n = 10, x = −4.5, |f(x)− Pn(x)| = 1.53166, so the maximum
error is not getting smaller as n increases.


