4.8. Hermite interpolation. The polynomial interpolation problem we have discussed so far only involves interpolation of the values of a function f at distinct points. It is also possible to seek a polynomial that interpolates f and some of its derivatives at a set of points. One example of this that we have already seen is the Taylor polynomial of degree $\leq n$ about the point x_0 , i.e.,

$$
T_n(x) = f(x_0) + f'(x_0)(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n.
$$

This has the property that

$$
T_n(x_0) = f(x_0),
$$
 $T'_n(x_0) = f'(x_0),$ $T_n^{(n)}(x_0) = f^{(n)}(x_0),$

i.e., T_n interpolates f and its derivatives up to order n at the point x_0 .

A more general interpolation problem is to find the polynomial of least degree such that

$$
\frac{d^k P}{dx^k}(x_i) = \frac{d^k f}{dx^k}(x_i), \qquad i = 0, 1, \cdots, n, \quad k = 0, 1, \cdots, m_i.
$$

Note that we allow the possibility of interpolating a different number (m_i) derivatives of f at different interpolation points.

For this case $m_i = 1$, there is a formula analogous to the Lagrange interpolation formula discussed previously.

Theorem 5. If $f \in C^1[a,b]$ and x_0, x_1, \cdots, x_n are distinct points in [a, b], then the unique polynomial of least degree agreeing with f and f' at $x_0, x_1, \cdots x_n$ is the Hermite polynomial of degree $\leq 2n + 1$ given by:

$$
H_{2n+1}(x) = \sum_{k=0}^{n} H_{k,n}(x) f(x_k) + \sum_{k=0}^{n} \hat{H}_{k,n}(x) f'(x_k),
$$

where

$$
H_{k,n}(x) = [1 - 2(x - x_k)L'_{k,n}(x_k)]L^2_{k,n}(x), \qquad \hat{H}_{k,n}(x) = (x - x_k)L^2_{k,n}(x),
$$

and for $k = 0, 1, \ldots, n$:

$$
L_{k,n}(x) = \prod_{\substack{j=0 \ j \neq k}}^{n} \frac{(x - x_j)}{(x_k - x_j)}, \quad n \ge 1, \qquad L_{0,0}(x) = 1.
$$

Moreover, if $f \in C^{2n+2}[a, b]$, then there is a point $\xi(x) \in (a, b)$, such that

$$
f(x) - H_{2n+1}(x) = \frac{f^{2n+2}(\xi(x))}{(2n+2)!}(x - x_0)^2 \cdots (x - x_n)^2.
$$

Recall that the key property satisfied by $L_{k,n}(x)$ was $L_{k,n}(x_i) = 1$ if $k = i$ and $L_{k,n}(x_i) = 0$ if $k \neq i$. The analogous properties for $H_{k,n}(x)$ and $\hat{H}_{k,n}(x)$ are:

$$
H_{k,n}(x_i) = 1, \ k = i, \quad H_{k,n}(x_i) = 0, \ k \neq i, \qquad H'_{k,n}(x_i) = 0, \ i = 0, \ldots, n,
$$

$$
\hat{H}'_{k,n}(x_i) = 1, \ k = i, \quad \hat{H}'_{k,n}(x_i) = 0, \ k \neq i, \qquad \hat{H}_{k,n}(x_i) = 0, \ i = 0, \ldots, n.
$$

4.9. Divided differences for repeated points. Recall

$$
f[x_0, x_1, \ldots, x_k] = \sum_{i=0}^k \frac{f(x_i)}{\prod_{\substack{j=0 \ j \neq i}}^{n} (x_i - x_j)}.
$$

Note that $f[y_0, \ldots, y_k] = f[x_0, \ldots, x_k]$ if y_0, \ldots, y_k is any reordering of x_0, \ldots, x_k . So far, $f[x_0, \ldots, x_k]$ has only been defined when the points x_0, \ldots, x_k are distinct. We now wish to extend the definition to include the case of repeated points.

Example: $k = 1$. $f[x_0, x_1] = [f(x_1) - f(x_0)]/(x_1 - x_0)$, $x_1 \neq x_0$. If $f \in C^1$, then $\lim_{x_0, x_1 \to y} f[x_0, x_1] = f'(y)$. So we define $f[x_0, x_1] = f'(x_0)$ when $x_0 = x_1$. In general, define

$$
f[x_0,...,x_k] = \frac{f^{(k)}(y)}{k!}
$$
, if $x_0 = x_1 = \cdots = x_k = y$.

With this interpretation, we can still use the Newton formula

$$
P_n(x) = \sum_{i=0}^n f[x_0, \dots, x_i] \prod_{j=0}^{i-1} (x - x_j)
$$

to describe the polynomial of degree $\leq n$ interpolating $f(x)$ at x_0, \ldots, x_n , even when the points x_0, \ldots, x_n are not necessarily distinct. The error is still given by the formula

$$
f(x) - P_n(x) = f[x_0, \dots, x_n, x] \prod_{j=0}^n (x - x_j),
$$

where by the interpolating polynomial we now mean that if the point z appears $k + 1$ times among x_0, \ldots, x_n , then \sqrt{q}

$$
P_n^{(j)}(z) = f^{(j)}(z), \quad j = 0, \dots, k.
$$

Furthermore, if $f \in C^{n+1}(a, b)$ and $x_0, \ldots, x_n, x \in [a, b]$, then one can show that

$$
f[x_0, \dots, x_n, x] = \frac{f^{(n+1)}(\xi)}{(n+1)!}
$$

for some ξ satisfying $\min(x_0, \ldots, x_n, x) \leq \xi \leq \max(x_0, \ldots, x_n, x)$.

Example: $f(x) = \ln x$. Calculate $f(1.5)$ by cubic interpolation using the data: $f(1) = 0$, $f'(1) = 1, f(2) = 0.693147, f'(2) = 0.5.$ Take $x_0 = 1, x_1 = 1, x_2 = 2, x_3 = 2.$

TABLE 2

Using the divided difference table, we get

$$
P_3(x) = f(1) + f[1,1](x-1) + f[1,1,2](x-1)^2 + f[1,1,2,2](x-1)^2(x-2)
$$

= 0 + 1(x-1) + (-.306853)(x-1)^2 + (.113706)(x-1)^2(x-2).

So $P_3(1.5) = .409074$.

From the error formula, we have $\ln(x) - P_3(x) = f^{(4)}(\xi)(x-1)^2(x-2)^2/4!$. Hence,

$$
|\ln(1.5) - P_3(1.5)| \le \frac{1}{4!} \max_{1 \le \xi \le 2} \frac{6}{\xi^4} (.5)^4 = \frac{1}{64} = 0.015624
$$

The actual error is .00361.

4.10. Runge example. One might infer from the error formula for polynomial interpolation that as one adds more and more interpolation points, one gets a better and better approximation. This fact is not true in general and depends on how the points are added.

Example: Runge $f(x) = 1/(1 + x^2)$, $x \in [-5, 5]$. Set $x_j = -5 + j\Delta x$, $j = 0, 1, ..., n$, $\Delta x = 10/n$. For each n, there is a unique polynomial $P_n(x)$ of degree $\leq n$ satisfying $P_n(x_i) = f(x_i)$. However, $|f(x) - P_n(x)|$ will become arbitrarily large at points in $[-5, 5]$ as *n* becomes large. One can show that for $n = 2r$,

$$
f(x) - P_n(x) = \prod_{j=0}^n x(x - x_j) \frac{f(x)(-1)^{r+1}}{\prod_{j=0}^r (1 + x_j^2)}.
$$

For $n=2$,

$$
|f(x) - P_2(x)| \le \frac{|x^2(x+5)(x-5)|}{26(1+x^2)} \le 1,
$$

by looking at the graphs. For $n = 10$, $x = -4.5$, $|f(x) - P_n(x)| = 1.53166$, so the maximum error is not getting smaller as n increases.