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5. Piecewise Polynomial Approximation

Consider a partition P of an interval [a, b] by points x0, . . . , xn, i.e., a = x0 < x1 < . . . <
xn = b.

Definition: We say Q(x) is a Cr piecewise polynomial of degree ≤ k with respect to the
partition P if Q ∈ Cr[a, b] and Q has the form Q(x) = Qj(x) for x ∈ (xj−1, xj), j = 1, . . . n,
where Qj(x) is a polynomial of degree ≤ k for each value of j.

Note that since Q(x) ∈ Cr and the Qj are polynomials, its first r derivatives are continuous
and its r + 1st derivative is defined everywhere except possibly at the points xj.

Examples of piecewise polynomials:

k = 0: Piecewise constants (dimension = n). Degrees of freedom are: values of Q on each
subinterval.

k = 1: Discontinuous piecewise linears (dimension = 2n). Degrees of freedom are: 2
values of Q on each subinterval. Continuous piecewise linears (dimension = n+ 1). Degrees
of freedom are: values of Q at points xj. Note, in this case, we choose the mesh points xj to
insure continuity of Q, i.e., to have Qj(xj) = Qj+1(xj).

k = 2: Discontinuous piecewise quadratics (dimension = 3n). Degrees of freedom are:
3 values of Q on each subinterval. Continuous piecewise quadratics (dimension = 2n + 1).
Degrees of freedom are: values of Q at xj and at one interior point in each subinterval. C1

piecewise quadratics (dimension = 2n+ 1− (n− 1) = n+ 2. Degrees of freedom are: values
of Q at xj and Q′(x0).

k = 3: C−1, C0, C1, C2 piecewise cubics. C−1: (dimension = 4n). Degrees of freedom
are: 4 values of Q on each subinterval. C0: (dimension = 3n + 1). Degrees of freedom are:
values of Q at xj and at 2 interior points in each subinterval. C1: (dimension = 2n + 2).
Degrees of freedom are: values of Q and Q′ at xj. Note that this choice will guarantee that
Q and Q′ will be continuous across mesh points. C2: (dimension = 2n+2− (n−1) = n+3).
Degrees of freedom are: values of Q at xj plus 2 additional conditions.

Note: A Cr piecewise polynomial of degree ≤ r is a global polynomial of degree ≤ r. If
r = k − 1, Q is called a spline function.

Table 3

Number of Degrees of Freedom of a

Piecewise Polynomial of Degree ≤ n

n C−1 C0 C1 C2

0 n 1
1 2n n+ 1 2
2 3n 2n+ 1 n+ 2 3
3 4n 3n+ 1 2n+ 2 n+ 3
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5.1. Piecewise linear approximation. Consider in more detail the case of continuous,
piecewise linear approximation. Define the continuous, piecewise linear interpolant of a
function f as the continuous, piecewise linear function L(x) satisfying L(xj) = f(xj), j =
0, . . . n. Using the Lagrange form of the interpolating polynomial, can write this as:

L(x) =
x− xi

xi−1 − xi

f(xi−1) +
x− xi−1

xi − xi−1

f(xi), x ∈ [xi−1, xi].

A useful basis for the space of continuous, piecewise linear functions is the set {ψi}
n
i=0,

where

ψi(x) = 0, x /∈ [xi−1, xi+1],

= (x− xi−1)/(xi − xi−1), x ∈ [xi−1, xi],

= (xi+1 − x)/(xi+1 − xi), x ∈ [xi, xi+1].

The basis function ψi(x) is called a hat function. Note that ψi(xj) = 0 for i 6= j and = 1 for
i = j. Hence, we can write

L(x) =
n

∑

i=0

ψi(x)L(xi) =
n

∑

i=0

ψi(x)f(xi).

In this form, the degrees of freedom for L(x) are the values L(xi), and thus the solution of
the interpolation problem is simple.

When the points xj are equally spaced, we get a simplification. Let

φ(x) = 0, x ≥ 1, and x ≤ −1,

= 1 − x, 0 ≤ x ≤ 1,

= 1 + x, −1 ≤ x ≤ 0.

Then ψi(x) = φ([x− xi]/h), where h = xi+1 − xi.

How good an approximation is the continuous piecewise linear interpolant? On each
subinterval, L(x) is just the linear interpolating polynomial. Hence, using the error formula,
we have for x ∈ [xi−1, xi],

|f(x) − L(x)| ≤M2,i(xi − xi−1)
2/8,

where M2,i = maxxi−1≤ξ≤xi
|f ′′(ξ)|. Hence, for all x ∈ [a, b],

|f(x) − L(x)| ≤M2 max
i=1,n

(xi − xi−1)
2/8 ≤M2h

2/8,

where M2 = maxi=1,nM2,i = maxx0≤ξ≤xn
|f ′′(ξ)| and h = maxi=1,n |xi − xi−1|.

Hence, if f ∈ C2[a, b], then taking more subintervals and letting the subinterval size
approach zero, we can make the error as small as desired.
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5.2. Piecewise cubic Hermite approximation. Next consider the piecewise cubic Her-
mite interpolant, i.e., a C1 piecewise cubic H(x) satisfying

H(xj) = f(xj), H ′(xj) = f ′(xj), j = 0, . . . n.

On the subinterval [xi−1, xi], H is just the cubic polynomial satisfying:

H(xi−1) = f(xi−1), H(xi) = f(xi), H ′(xi−1) = f ′(xi−1), H ′(xi) = f ′(xi),

and so for x ∈ [xi−1, xi],

H(x) = f(xi−1) + f ′(xi−1)(x− xi−1) + f [xi−1, xi−1, xi](x− xi−1)
2

+ f [xi−1, xi−1, xi, xi](x− xi−1)
2(x− xi).

On the interval [xi−1, xi], the error

|f(x) −H(x)| =
|f (4)(ξi)|

4!
(x− xi−1)

2(x− xi)
2

=
M4,i

4!

(xi − xi−1)
4

16
≤M4h

4/384,

where M4,i = maxxi−1≤ξ≤xi
|f (4)(ξ)|, M4 = maxi=1,nM4,i = maxx0≤ξ≤xn

|f (4)(ξ)| and h =
maxi=1,n |xi − xi−1|.

It is also useful to have a representation of H that uses the degrees of freedom H(xj) and
H ′(xj), j = 0, 1, . . . , n. Since the dimension of the space of piecewise C1 cubics is 2n+2, we
need to find basis functions φi(x), ψi(x), i = 0, 1, . . . , n that are C1 piecewise cubics so that

H(x) =
n

∑

i=0

φi(x)H(xi) +
n

∑

i=0

ψi(x)H
′(xi).

We do this by finding φi(x) and ψi(x) satisfying:

φi(xi) = 1, φi(xj) = 0, j 6= i, φ′
i(xj) = 0, for all j,

ψi(xj) = 0, for all j, ψ′
i(xi) = 1, ψ′

i(xj) = 0, j 6= i.

We see that this implies that φi(x) = 0 and ψi(x) = 0 for x ≤ xi−1 and x ≥ xi+1. On the
subintervals (xi−1, xi) and (xi1, xi+1), we have:

φi(x) =

(

x− xi−1

hi

)2 (

1 − 2
x− xi

hi

)

, xi−1 < x < xi,

φi(x) =

(

xi+1 − x

hi+1

)2 (

1 + 2
x− xi

hi+1

)

, xi < x < xx+1,

ψi(x) = (x− xi)

(

x− xi−1

hi

)2

, xi−1 < x < xi,

ψi(x) = (x− xi)

(

xi+1 − x

hi+1

)2

, xi < x < xi+1,

We can reduce the work in finding these functions by noting that since φi(xi−1) and φ′
i(xi−1) =

0, (x − xi−1)
2 must be a factor of φi(x) on the subinterval (xi−1, xi) and by the defining
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conditions, ψi(x) must be a multiple of (x − xi)(x − xi−1)
2 on that subinterval. Similar

formulas hold on the subinterval (xi, xi+1).

When the mesh points are equally spaced at a distance h apart, we can define basis
functions for the space of piecewise cubic Hermite functions in the following simple way. We
first define the functions

φ(x) = (x+ 1)2(1 − 2x), −1 < x < 0, φ(x) = (1 − x)2(1 + 2x), 0 < x < 1,

ψ(x) = x(x+ 1)2, −1 < x < 0, ψ(x) = x(1 − x)2, 0 < x < 1,

with φ(x) = 0 and ψ(x) = 0 for x ≤ −1 and x ≥ 1. Then, the 2n + 2 basis functions are
given by

φi(x) = φ([x− xi]/h), ψi(x) = hψ([x− xi]/h), i = 0, . . . , n.
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Figure 2. The functions φ(x) and ψ(x)


