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1. Polynomial Interpolation

1.1. Weierstrass Approximation Theorem. If f(x) is continuous on a finite interval
[a, b], then given ǫ > 0, there exists n depending on ǫ and a polynomial Pn(x) of degree ≤ n
such that |f(x)− Pn(x)| ≤ ǫ for all x ∈ [a, b].

The proof uses Bernstein polynomials: These polynomials are defined on the interval
[0, 1] by: Bn(x) =

∑n
k=0

(

n
k

)

xk(1 − x)n−kf(k/n). One can show that limn→∞ Bn(x) = f(x)
uniformly in [0, 1], so we can approximate continuous functions to any accuracy using poly-
nomials. If y ∈ [a, b], we can reduce the problem to the interval [0, 1] by the change of
variable x = (y − a)/(b− a). If f(x) satisfies a Lipschitz condition, i.e., if

|f(x)− f(y)| ≤ L|x− y|, for all x, y ∈ [0, 1],

then it is known that
|f(x)− Bn(x)| ≤

1
2
Ln−1/2.

1.2. Polynomial interpolation: Given n+1 distinct points x0, . . . , xn, and function values
f(x0), . . . , f(xn), find a polynomial Pn(x) of degree ≤ n satisfying Pn(xj) = f(xj), j =
0, 1, . . . , n.

We say Pn interpolates f at x0, . . . , xn and consider two methods of constructing such a
polynomial.

1.3. Lagrange form of the interpolating polynomial. : Define for k = 0, 1, . . . , n:

Lk,n(x) =
n
∏

j=0

j 6=k

(x− xj)

(xk − xj)
, n ≥ 1, L0,0(x) = 1.

Claim: P (x) =
∑n

k=0 Lk,n(x)f(xk) is a polynomial of degree ≤ n that interpolates f at
x0, . . . , xn. This representation is called the Lagrange form of the interpolating polynomial.

Another way of thinking about this form of a polynomial is that we are writing P (x) =
∑n

k=0 Lk,n(x)P (xk). The functions Lk,n(x) are fixed and the polynomial P (x) is then uniquely
determined by its values P (xk) at the n+1 points x0, . . . , xn. These values P (x0), . . . , P (xn)
are the degrees of freedom of P (x) (in this form of the polynomial), i.e., they are the quantities
we are free to choose that uniquely determine P (x). Once we know we can write any
polynomial in this form, it is then easy to solve the interpolation problem, i.e., we simply
replace P (xk) by f(xk).

Observe that Lk,n(x) is a product of n monomials in x and hence is a polynomial of degree
≤ n. Taking linear combinations still gives a polynomial of degree ≤ n.

Next: Lk,n(xi) = 0, i 6= k. Lk,n(xi) = 1, i = k. Hence, P (xi) = f(xi).

Uniqueness: Suppose Q(x) is another interpolating polynomial of degree ≤ n. Then
R(x) = P (x) − Q(x) is of degree ≤ n and equals zero at x0, . . . , xn. Since R(x) = 0 at the
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distinct points x1, . . . , xn, R(x) has the form R(x) = A(x−x1) · · · (x−xn) for some constant
A. Then R(x0) = 0 implies A = 0, so R(x) = 0.

Note: There exists other polynomials of degree d > n interpolating f at x0, . . . , xn.

Examples: n = 0: P0(x) = f(x0).

n = 1: P1(x) =
x−x1

x0−x1

f(x0) +
x−x0

x1−x0

f(x1).

1.4. Newton form of the interpolating polynomial. Note we can also write:

P1(x) = f(x0) +
f(x1)− f(x0)

x1 − x0

(x− x0).

This is an example of the Newton form of the interpolating polynomial. In general, we
want to write Pn(x) = Pn−1(x)+Qn(x), where Pn−1 interpolates f at x0, . . . , xn−1 and Qn(x)
has a simple form.

By the definitions of Pn and Pn−1, Qn(x) is of degree ≤ n and = 0 at x0, . . . , xn−1. Hence,
Qn(x) = An(x− x0) · · · (x− xn−1) for some constant An. So we need only determine An.

Now f(xn) = Pn(xn) = Pn−1(xn) +Qn(xn). Hence,

An =
f(xn)− Pn−1(xn)
∏n−1

j=0 (xn − xj)

= f(xn)−
n−1
∑

k=0







n−1
∏

j=0

j 6=k

xn − xj

xk − xj






f(xk)/

n−1
∏

j=0

(xn − xj)

=
f(xn)

∏n−1
j=0 (xn − xj)

−

n−1
∑

k=0

f(xk)
∏n−1

j=0

j 6=k

(xk − xj)
·

1

xn − xk

=
n

∑

k=0

f(xk)
∏n

j=0

j 6=k

(xk − xj)
.(1.1)

We refer to An given by this formula as the nth divided difference of f with respect to
x0, . . . , xn and denote it by f [x0, x1, . . . , xn].

Defining the divided difference f [x0] = f(x0), we can generate the polynomials Pn(x)
recursively. Beginning with P0(x) = f(x0) = f [x0], we obtain

P1(x) = P0(x) + f [x0, x1](x− x0) = f [x0] + f [x0, x1](x− x0).

Then

P2(x) = P1(x) + f [x0, x1, x2](x− x0)(x− x1)

= f [x0] + f [x0, x1](x− x0) + f [x0, x1, x2](x− x0)(x− x1).
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In general, we get the formula:

(1.2) Pn(x) =
n

∑

i=0

f [x0, . . . , xi]
i−1
∏

j=0

(x− xj),

where we define
∏

−1
j=0(x− xj) = 1.

Formula (1.2) is known as the Newton form of the interpolating polynomial.

In order to use formula (1.2), we must of course be able to evaluate the divided difference
f [x0, . . . , xi]. Using (1.1), we have that

f [x0, x1] =
f(x0)

x0 − x1

+
f(x1)

x1 − x0

=
f(x1)− f(x0)

x1 − x0

.

and

f [x0, x1, x2] =
f(x0)

(x0 − x1)(x0 − x2)
+

f(x1)

(x1 − x0)(x1 − x2)
+

f(x2)

(x2 − x0)(x2 − x1)
.

Observing that

f(x1)

(x1 − x0)(x1 − x2)
=

f(x1)

(x1 − x0)(x0 − x2)
−

f(x1)

(x1 − x2)(x0 − x2)
,

we can rewrite

f [x0, x1, x2] =

{

f(x2)− f(x1)

x2 − x1

−
f(x1)− f(x0)

x1 − x0

}

/(x2 − x0) =
f [x1, x2]− f [x0, x1]

x2 − x0

.

The reason for writing f [x0, x1, x2] in this form is that it indicates an easy way of generating
divided differences recursively. We can show in general that

f [x0, . . . , xn] =
f [x1, . . . , xn]− f [x0, . . . , xn−1]

xn − x0

.

This formula allows us to generate all the divided differences needed for the Newton formula
in a simple manner by using a divided difference table, rather than using formula (1.1). We
illustrate such a table in the case n = 4.

Table 1

Divided difference table

xk f(xk) f[,] f[,,] f[,,,] f[,,,,]
x0 f(x0)

f [x0, x1]
x1 f(x1) f [x0, x1, x2]

f [x1, x2] f [x0, x1, x2, x3]
x2 f(x2) f [x1, x2, x3] f [x0, x1, x2, x3, x4]

f [x2, x3] f [x1, x2, x3, x4]
x3 f(x3) f [x2, x3, x4]

f [x3, x4]
x4 f(x4)
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The divided differences in the table are calculated a column at a time using the formula

f [xi, . . . , xi+k] =
f [xi+1, . . . , xi+k]− f [xi, . . . , xi+k−1]

xi+k − xi

.

The coefficients needed for the Newton formula are then found at the beginning of each
column.

Observe how entries are added to the table each time a a new data point is added. For
example, if we started with the entries in the table involving only the points x0, x1, x2, x3, and
added the point x4, we would successively generate f [x3, x4]. f [x2, x3, x4], f [x1, x2, x3, x4],
and finally f [x0, x1, x2, x3, x4], the additional divided difference needed for the construction
of P4(x).

We shall return frequently to the idea of degrees of freedom of a function f . These are
quantities that uniquely determine the function f . In all our applications, these will be
values of f or its derivatives at specific points, or possibly moments of f , i.e., quantities

of the form
∫ b

a
xrf(x) dx for some integers f ≥ 0. Note that a function may be uniquely

determined by several sets of degrees of freedom, and the choice of which ones to use and
how to represent the function will depend on the application. For example, we can also
represent any polynomial of degree ≤ n by its Taylor series expansion about a point x0, i.e.,

Pn(x) =
n

∑

j=0

P (j)(x0)

j!
(x− x0)

j.

In this representation, we see that Pn(x) is uniquely determined by the quantities P (j)(x0),
i.e., its derivatives up to order n at the point x0.


