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9. Approximation of Integrals – Continued

9.1. Iterative Approaches to the Approximation of Integrals. One of the simplest
iterative procedures to use is interval doubling. For example, using the composite trapezoidal
rule on N subintervals (call this approximation TN), we could calculate T2, T4. T8, etc.
doubling the number of subintervals at each step and stop when |TN−T2N | ≤ ǫ, the prescribed
error tolerance. To do such a procedure efficiently, we would not want to recalculate any
function values. Observe that

TN = h

N−1
∑

i=1

f(a+ ih) +
h

2
[f(a) + f(b)], h = (b− a)/N,

T2N =
h

2

2N−1
∑

i=1

f(a+ ih/2) +
h

4
[f(a) + f(b)].

Hence,

T2N =
h

2

[

N−1
∑

i=1

f(a+ ih) +
N
∑

i=1

f(a+ [i− 1/2]h)

]

+
h

4
[f(a) + f(b)]

=
1

2
TN +

h

2

N
∑

i=1

f(a+ [i− 1/2]h) =
1

2
(TN +MN).

So only the midpoint rule MN must be computed at each step.

9.2. Richardson Extrapolation and Romberg Integration. One can greatly improve
the rate of convergence of the composite trapezoidal rule by applying Richardson extrapo-
lation. The resulting method is called Romberg integration. The basic idea is described as
follows.

Suppose for every h > 0, we let Lh(f) denote an approximation to the number L(f).

For example, L(f) =
∫ b

a
f(x) dx and Lh(f) = TN(f), where h = (b − a)/N , the composite

trapezoidal rule on N subintervals. Suppose L(f) = Lh(f) + Chr + o(hr), where c is a
constant independent of h and r is a positive number. We say a quantity E is o(hr) if
|E/hr| → 0 as h → 0. We showed that

L(f) = TN(f)− (b− a)h2f ′′(ξ)/12.

Unfortunately, this ξ may depend on h so we are not exactly of the above form. Recall that

f ′′(ξ) =
1

N

N
∑

i=1

f ′′(ηi) =
h

b− a

N
∑

i=1

f ′′(ηi), ηi ∈ [xi−1, xi],

which depends on h.
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However, we can also derive another form of the error, known as the Euler-Maclaurin
summation formula (refr: Dahlquist, pg. 297). If f ∈ C2r+2, then

TN =

∫ b

a

f(x) dx+
h2

12
[f ′(b)− f ′(a)]−

h4

720
[f ′′′(b)− f ′′′(a)]

+ · · ·+ c2rh
2r[f (2r−1)(b)− f (2r−1)(a)] +O(h2r+2).

Hence the error does have the desired form with r = 2, i.e.,

L(f) = TN + c2h
2 +O(h4), c2 = [f ′(a)− f ′(b)]/12.

Now pick an h and a number q > 1 (e.g., q = 2) and calculate

L
(1)
h (f) = Lh(f) +

Lh(f)− Lqh(f)

qr − 1

from the two numbers Lh(f) and Lqh(f).

Example: q = 2:

T
(1)
N (f) = TN(f) +

TN(f)− TN/2(f)

4− 1
,

i.e., Lh ≡ TN and L2h ≡ TN/2.

Claim: L(f) = L
(1)
h (f) + o(hr).

Example:

L(f) = TN + c2h
2 +O(h4), L(f) = TN/2 + c2(2h)

2 +O([2h]4).

So

L(f)− T
(1)
N (f) = L(f)− TN(f)− [TN(f)− TN/2(f)]/3

= L(f)− TN(f)− [TN(f)− L(f) + L(f)− TN/2(f)]/3

= c2h
2 +O(h4)− [−c2h

2 −O(h4) + 4c2h
2 +O(h4)]/3 = O(h4) = o(h2).

Hence T
(1)
N (f) is an O(h4) approximation to L(f) while TN(f) is only an O(h2) approxima-

tion.

From the Euler-Maclaurin summation formula,

L(f) = TN(f) + c2h
2 + c4h

4 + · · · ,

with cr independent of h. Hence if f is sufficiently smooth, we can extrapolate again to get
a higher order approximation. Each extrapolation amounts to eliminating the next lowest

order term in the error L(f)− TN(f). The second extrapolation T
(2)
N (f) is defined by:

T
(2)
N (f) = T

(1)
N (f) + [T

(1)
N (f)− T

(1)
N/2(f)]/15.

In general, we define the mth extrapolate by:

T
(m)
N (f) = T

(m−1)
N (f) + [T

(m−1)
N (f)− T

(m−1)
N/2 (f)]//(4m − 1).

This will be a O(h2m+2) approximation to L(f).
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What quantities do we need to compute these extrapolations?

T
(1)
N requires TN and TN/2. T

(2)
N requires T

(1)
N and T

(1)
N/2. But T

(1)
N/2 requires TN/2 and TN/4,

so T
(2)
N requires TN , TN/2, and TN/4. T

(m)
N requires T

(m−1)
N and T

(m−1)
N/2 which requires T

(m−2)
N ,

T
(m−2)
N/2 , and T

(m−2)
N/4 . Continuing in this way, T

(m)
N will require TN , TN/2, · · · , TN/2m .

Suppose N/2m = I, an integer. The Romberg entries form the following table, where we

denote by T
(0)
J the composite trapezoidal rule with J subintervals.

Table 3

Romberg Integration Table

T 0
I

T 0
2I T 1

2I

T 0
4I T 1

4I T 2
4I

· · · · · · · · ·
T 0
2mI T 1

2mI T 2
2mI · · · Tm

2mI

The table is constructed one row at a time. When |Tm
2mI−T

(m−1)
2mI | < the given tolerance, the

iteration is stopped. We thus have the following algorithm for computing an approximation

to
∫ b

a
f(x) dx by Romberg Integration.

Romberg Integration

Given a function f defined on [a, b] and a positive integer I (say I = 2), set h = (b− a)/I.

Calculate T 0
I = h

I−1
∑

i=1

f(a+ ih) +
h

2
[f(a) + f(b)].

For k = 1, 2, · · · , do:

Calculate M2k−1I = h
∑2k−1I

i−1 f(a+ [i− 1/2]h).
Calculate T 0

2kI
= [T 0

2k−1I
+M2k−1I ]/2.

Set h = h/2 and for m = 1, · · · , k, do

Calculate Tm
2kI

= Tm−1
2kI

+ [Tm−1
2kI

− Tm−1
2k−1I

]/(4m − 1).

Stop when |Tm
2kI

− T
(m−1)

2kI
| < tolerance ǫ.

If f ∈ C2m+2, then L(f) =

∫ b

a

f(x) dx = Tm
2kI +O

(

[

b− a

2kI

]2m+2
)

.

Note: In these procedures, we are not taking advantage of the fact that the algorithm
may have already stabilized on some subintervals. Hence, we are doing function evaluations
where we don’t need to. Most modern adaptive codes take into account this information
and only decrease the subinterval size where the function appears to be rapidly changing.
We shall discuss this in more detail later.


