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10. Gaussian Quadrature

10.1. Quadrature formulas with given abscissas. We have previously seen that one
way of obtaining quadrature formulas of the form

∫ b

a

f(x) dx =
n

∑

j=0

Hjf(xj) + E

in the case when the xj are specified is to integrate the polynomial of degree ≤ n interpolating
f at the points x0, · · · , xn. Abstractly, we could use the Lagrange form of the interpolating
polynomial, Pn(x) =

∑n

j=0
Lj,n(x)f(xj) to obtain the formula

∫ b

a

f(x) dx ≈

∫ b

a

Pn(x) dx =
n

∑

j=0

[∫ b

a

Lj,n(x) dx

]

f(xj),

i.e., Hj =
∫ b

a
Lj,n(x) dx. (In our derivations, we used the Newton form of the interpolating

polynomial.)

When f is a polynomial of degree ≤ n, f ≡ Pn, so the quadrature formula is exact for all
polynomials of degree ≤ n. Hence, we have determined quadrature formulas of the above
form, where the Hj are determined by the criteria that the formula be exact for polynomials
of as high a degree as possible. We could also obtain these formulas by the method of
undetermined coefficients. Since we have n + 1 weights Hj, we would expect exactness for
polynomials of degree ≤ n. Substituting f(x) = xk, k = 0, · · · , n, we get the equations:

∫ b

a

xk dx =
n

∑

j=0

Hjx
k
j .

This is a set of n+ 1 linear equations for H0, · · · , Hn.








1 1 · · · 1
x0 x1 · · · xn

· · · · · · · · · · · ·
xn
0 xn

1 · · · xn
n

















H0

H1

· · ·
Hn









=









b− a
(b2 − a2)/2

· · ·
(bn+1 − an+1)/(n+ 1)









This matrix is the transpose of the Vandermonde matrix and hence is nonsingular. So the
Hjs are uniquely determined.

Note that if these equations hold, then if Pn(x) =
∑n

k=0
ckx

k,

∫ b

a

Pn(x) dx =
n

∑

k=0

ck

∫ b

a

xk dx =
n

∑

k=0

ck

n
∑

j=0

Hjx
k
j =

n
∑

j=0

Hj

n
∑

k=0

ckx
k
j =

n
∑

j=0

HjPn(xj),

so the formula is exact for all polynomials of degree ≤ n.

We can also consider the xjs as unknowns and try to determine both the xj and Hj to
make the resulting quadrature formula exact for as high degree polynomials as possible. Such
formulas are called Gaussian quadrature formulas.
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10.2. Gaussian quadrature formulas. If we try the method of undetermined coefficents
to get such formulas, we obtain the equations

∫ b

a

xk dx = (bk+1 − ak+1)/(k + 1) =
n

∑

j=0

Hjx
k
j , k = 0, 1, . . . .

There are now 2n+2 unknowns, so we could take 2n+2 equations. However, the equations
are now nonlinear, so it is not clear whether this system will have a solution, and even if it
does, obtaining the solution is not simple.

We instead use a different approach based on orthogonal polynomials. It is convenient to
consider a slightly more general problem, i.e., we introduce a fixed weight function w(x) and
look for a formula of the form

∫ b

a

w(x)f(x) dx =
n

∑

j=0

Hjf(xj) + E.

We assume that w(x) is continuous on (a, b) and w(x) > 0, except at most a set of isolated
values. The advantages of this formulation and special choices of w(x) will be discussed
later. Obviously, w(x) ≡ 1 reduces to the original problem. We also allow a and b to be
infinite, as well as finite.

10.3. Orthogonal polynomials. Define (f, g) =
∫ b

a
w(x)f(x)g(x) dx. One can show that

(·, ·) is an inner product on the space

V = {f : f ∈ C0(a, b),

∫ b

a

w(x)f 2(x) dx < ∞}.

That is, we have the properties:

(f, g) = (g, f), (f + g, h) = (f, h) + (g, h), (λf, g) = λ(f, g), λ ∈ R,

(f, f) ≥ 0, (f, f) = 0 ⇐⇒ f = 0.

We can also define the norm of f , ‖f‖ =
√

(f, f).

We say f and g are othogonal if (f, g) = 0. Then a set f1, · · · , fn is an orthogonal set of
functions if (fi, fj) = 0, i 6= j. A set f1, · · · , fn is orthonormal if f1, · · · , fn is orthogonal
and (fi, fi) = 1, i = 1, . . . , n.

In the following discussion, we let Φ0(x),Φ1(x), · · · be a set of polynomials satisfying (i)
Φj(x) is of degree j and (ii) (Φj,Φk) = 0, j 6= k (i.e., we have a set of orthogonal polynomials).

Properties of orthogonal polynomials:

Lemma 3. A non-zero polynomial P (x) of degree at most k is orthogonal to every polynomial

of degree < k if and only if P (x) = cΦk(x) for some non-zero constant c.

Proof. Let P (x) = cΦk(x). We first show that (P,Q) = 0 for any polynomial Q(x) of degree
< k. To do so, we observe that any set of j + 1 polynomials of exact degrees 0, 1, . . . , j is
a basis for the set of all polynomials of degree ≤ j. Hence, any polynomial Q(x) of degree
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< k is a linear combination of Φ0,Φ1, . . . ,Φk−1. Since Φk is orthogonal to each of these by
assumption, it is orthogonal to Q and hence (P,Q) = 0.

Now assume P (x) of degree at most k is orthogonal to every polynomial of degree < k.
Then for any constant c, so is P (x) − cΦk(x). Choose c so that the coefficient of xk in
P (x)− cΦk(x) is equal to zero. For this value of c, R(x) = P (x)− cΦk(x) is of degree < k.
Hence, R(x) is orthogonal to itself, so R(x) ≡ 0, i.e., P (x) = cΦk(x). �

Corollary: Orthogonal polynomials are unique to within multiplication by non-zero con-
stants. Hence, we still have a set of arbitrary constants to specifiy to completely determine
a set of orthogonal polynomials. We use these constants to normalize the polynomials in
some convenient way. Two standard possibilities: (i) make the leading coefficient (of xk) in
Φk(x) equal to one or (ii) make ‖Φk‖ = 1, i.e., make the set orthonormal.

Remark: We are assuming a fixed inner product. If the weight function w(x) or the limits
of integration a or b are changed, then we have a new inner product and hence a new set of
orthogonal polynomials.

Using Lemma 3, we now prove a key result for the derivation of the quadrature formula.

Theorem 6. Φk(x) has k real distinct zeroes lying in (a, b).

Proof. Let a1, . . . , ak be the roots of Φk(x). As x varies from a to b, let Φk(x) change sign at
the points b1, . . . , bl. Obviously, Φk(bj) = 0 and so the bj are a subset of the aj (l ≤ k). Let

P (x) =
∏l

j=1
(x−bj) if l ≥ 1, P (x) ≡ 1 if l = 0. Now P (x) also changes sign at b1, . . . bl since

one factor changes sign as x crosses bj. Hence, P (x)Φk(x) is either always ≥ 0 or always
≤ 0. Since w(x) > 0,

(P,Φk) =

∫ b

a

w(x)P (x)Φk(x) dx 6= 0.

By Lemma 3, the degree of P (x) is at least k, i.e., l = k and a1, · · · , ak = b1, · · · , bk are
distinct real zeroes of Φk(x). �

We next present an algorithm for the construction of a set of orthogonal polynomials (for
a given inner product).

Theorem 7. Lanczo’s Orthogonalization theorem Let

Φ0 = 1, Φ1 = x− α1, Φk = xΦk−1 − αkΦk−1 − βkΦk−2, k = 2, 3, · · · ,

where

γk = (Φk,Φk), k = 0, 1, . . . , αk = (xΦk−1,Φk−1)/γk−1, k = 1, 2, . . . ,

βk = (xΦk−1,Φk−2)/γk−2, k = 2, 3, . . . .

Then Φ0,Φ1, . . . are an orthogonal set of polynomials.

Proof. We need to prove the following: For k = 0, 1, · · · , (i) Φk is a polynomial of degree k,
(ii) γk 6= 0, since we must divide by it, and (iii) (Φk,Φj) = 0 for j < k. Now (ii) follows
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from (i), since if Φk is a polynomial of degree k, it cannot be zero and hence γk 6= 0. We
now prove (i) and (iii) by induction.

k = 0. Φ0 is of degree zero. Since there is no j < 0, (iii) is not applicable. γ0 = (1, 1).

k = 1. Φ1 is of degree one. α1 = (x, 1)/(1, 1) and

(Φ1,Φ0) = (x− α1, 1) = (x, 1)− α1(1, 1) = 0.

Now assume (i), (ii), and (iii) hold for all Φl with l < k. We will show that (i) and (iii)
hold for l = k. Now Φk = xΦk−1−αkΦk−1−βkΦk−2. Since Φk−1 and Φk−2 are of degrees k−1
and k − 2, respectively, xΦk−1 is of degree k and hence Φk is of degree k. This establishes
(i). The proof of (iii) requires three cases (j = k − 1, j = k − 2, j < k − 2). Now

(Φk,Φk−1) = (xΦk−1,Φk−1)− αk(Φk−1,Φk−1)− βk(Φk−2,Φk−1) = 0

using the definition of αk and the fact that (iii) holds for l = k − 1, i.e., (Φk−2,Φk−1) = 0.
When j = k − 2,

(Φk,Φk−2) = (xΦk−1,Φk−2)− αk(Φk−1,Φk−2)− βk(Φk−2,Φk−2) = 0

using the definition of βk and the fact that (iii) holds for l = k − 1, i.e., (Φk−2,Φk−1) = 0.
Finally, when j < k − 2,

(Φk,Φj) = (xΦk−1,Φj)− αk(Φk−1,Φj)− βk(Φk−2,Φj)

= (Φk−1, xΦj)− αk(Φk−1,Φj)− βk(Φk−2,Φj).

Since xΦj is of degree < k − 1, we again use the fact that (iii) holds for k − 1 and k − 2 to
conclude that all terms on the right hand side are equal to zero. �

Corollary 2: The leading term of Φk has coefficient one.

Corollary 3: βk = γk−1/γk−2.

γk−2βk = (xΦk−1,Φk−2) = (Φk−1, xΦk−2)

= (Φk−1,Φk−1) + αk−1(Φk−1,Φk−2) + βk−1(Φk−1,Φk−3) = γk−1.

Corollary 4: γk = (xk,Φk).

γk = (Φk,Φk) = (xk + P (x),Φk) = (xk,Φk),

using Lemma 3 and the fact that P (x) is a polynomial of degree at most k − 1.

Corollary 5: If Φk−1(x) = xk−1 + ck−1x
k−2 + · · ·+, then αk = (xk,Φk−1)/γk−1 + ck−1.

αk = (xΦk−1,Φk−1)/γk−1 = (x[xk−1 + ck−1x
k−2 + · · ·+],Φk−1)/γk−1

= (xk,Φk−1)/γk−1 + ck−1(x
k−1,Φk−1)/γk−1 + 0 = (xk,Φk−1)/γk−1 + ck−1.

Remark: Corollaries 3, 4, and provide the most convenient formulas for constructing the
orthogonal polynomials.


