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10.4. Construction of Gaussian quadrature formulas. Using these results, we now
return to the problem of finding abscissas x0, · · · , xn and weights H0, · · · , Hn so that

∫ b

a

w(x)P (x) dx =
n∑

j=0

HjP (xj)

for all polynomials P (x) of degree ≤ 2n+ 1. We make use of the following result, which we
have already established.

Lemma 4. For any distinct points x0, · · · , xn with a < xi < b, there exist unique constants

H0, · · · , Hn, such that for any polynomial of degree ≤ n,
∫ b

a

w(x)P (x) dx =
n∑

j=0

HjP (xj).

We note that the constants Hj are given by the formula

Hj =

∫ b

a

w(x)Lj,n(x) dx, where Lj,n(x) =
n∏

i=0

i 6=j

(x− xi)/(xj − xi).

Our main result is the following theorem.

Theorem 8. There exist abscissas x0, · · · , xn and weights H0, · · · , Hn such that

∫ b

a

w(x)P (x) dx =
n∑

j=0

HjP (xj)

for all polynomials P (x) of degree ≤ 2n+ 1 if and only if the xj are the zeroes of Φn+1.

Proof. For any x0, . . . , xn, let Pn+1(x) =
∏n

j=0(x−xj). Then any polynomial P (x) of degree

≤ 2n + 1 can be written in the form P (x) = Q(x)Pn+1(x) + R(x), where Q and R are
polynomials of degree at most n. Then the quadrature formula

(10.1)

∫ b

a

w(x)P (x) dx =
n∑

j=0

HjP (xj)

becomes

(10.2)

∫ b

a

w(x)P (x) dx =

∫ b

a

w(x)Q(x)Pn+1(x) dx+

∫ b

a

w(x)R(x) dx

=
n∑

j=0

HjQ(xj)Pn+1(xj) +
n∑

j=0

HjR(xj) =
n∑

j=0

HjR(xj),

since Pn+1(xj) = 0. Hence, the quadrature formula (10.1) will hold for any polynomial P (x)
of degree ≤ 2n+ 1 if and only if the quadrature formula (10.2) holds for all Q(x) and R(x)
of degree ≤ n.
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Now if the xjs are the zeroes of Φn+1(x), i.e., if Pn+1(x) = Φn+1(x), then∫ b

a

w(x)Q(x)Pn+1(x) dx =

∫ b

a

w(x)Q(x)Φn+1(x) dx = 0

since (Φn+1, Q) = 0 for all polynomials Q of degree ≤ n. By Lemma 4, there exist constants
H0, . . . , Hn such that ∫ b

a

w(x)R(x) dx =
n∑

j=0

HjR(xj).

Hence, (10.2) holds if the xj are the zeroes of Φn+1(x).

Now suppose (10.2) holds for all Q(x) and R(x) of degree ≤ n. Then it must hold when
R(x) ≡ 0, i.e., ∫ b

a

w(x)Q(x)Pn+1(x) dx = (Q,Pn+1) = 0

for all Q of degree ≤ n. By Lemma 3, Pn+1(x) = cΦn+1(x), c 6= 0 and so the xjs are the
zeroes of Φn+1(x). �

We next derive a formula for the error in this approximation.

Theorem 9. If the xj and Hj are defined as in Lemma 4 and Theorem 8, and if f(x) ∈ V
satsifies f (2n+2) is continuous in (a, b), then

E =

∫ b

a

w(x)f(x) dx−
n∑

j=0

Hjf(xj) =
γn+1

(2n+ 2)!
f (2n+2)(ξ)

for some ξ ∈ (a, b).

Proof. Denote by Q(x) the polynomial of degree ≤ 2n + 1 which solves the Hermite inter-
polation problem Q(xi) = f(xi), Q

′(xi) = f ′(xi), i = 0, . . . , n. By Theorem 8, the Gauss
quadrature formula is exact for Q(x), i.e.,∫ b

a

w(x)Q(x) dx =
n∑

j=0

HjQ(xj) =
n∑

j=0

Hjf(xj).

Hence, by the error formula for polynomial interpolation,

E =

∫ b

a

w(x)f(x) dx−
n∑

j=0

Hjf(xj) =

∫ b

a

w(x)[f(x)−Q(x)] dx

=

∫ b

a

w(x)f [x0, x0, x1, x1, · · · , xn, xn, x]
n∏

j=0

(x− xj)
2 dx

=
f (2n+2)(ξx)

(2n+ 2)!

∫ b

a

w(x)
n∏

j=0

(x− xj)
2 dx

=
f (2n+2)(ξx)

(2n+ 2)!

∫ b

a

w(x)Φ2
n+1(x) dx,
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where we have used the fact that Φn+1 is the unique polynomial of degree n with leading
coefficient equal to one, with zeros at x0, . . . , xn. �

Remark: It is possible to show that the Hj can be computed without integrations. The
result is:

Hj =
γn

Φn(xj)Φ′

n+1(xj)
.

10.5. Examples of orthogonal polynomials. We next present standard sets of orthog-
onal polynomials corresponding to different choices of weight functions w(x) and limits of
integration a and b.

(i) a = −1, b = 1, w(x) ≡ 1. Legendre polynomials. The corresponding quadrature
formula is called the Legendre-Gauss quadrature formula.

(ii) a = 0, b = ∞, w(x) = e−x. Laguerre polynomials.

(iii) a = −1, b = 1, w(x) = 1/
√
1− x2. Chebyshev polynomials.

(iv) a = −∞, b = ∞, w(x) = e−x2

. Hermite polynomials.

There are several advantanges to including a weight function w(x). When either or both
a and b are infinite, it is convenient to choose w(x) to insure convergence of the integral
of w(x)f(x), where f(x) is a polynomial of arbitrary degree (as in (ii) and (iii) above). In
singular integrals, e.g., with terms like 1/

√
1− x2, it is convenient to have formulas and

expressions for the error that do not depend on such terms.


