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10.4. Construction of Gaussian quadrature formulas. Using these results, we now

return to the problem of finding abscissas xg, - - - , x, and weights Hy,--- , H, so that
b n
/ w(z)P(z)de =Y H;P(x;)
a ]:0

for all polynomials P(z) of degree < 2n + 1. We make use of the following result, which we
have already established.

Lemma 4. For any distinct points xg,--- ,x, with a < x; < b, there exist unique constants
Hy, -+, H,, such that for any polynomial of degree < n,

b n
/ w(z)P(z)de =Y H;P(z;).

J=0

We note that the constants H; are given by the formula

n

b
H; = / w(x)L;,(x)dx, where  Lj,(z) = H(az —x;)/(z; — x;).

i=0
i

Our main result is the following theorem.

Theorem 8. There exist abscissas xg, -+ ,x, and weights Hy,--- , H, such that
b n
/ w(z)P(x)dx = Z H;P(z;)
a j:()

for all polynomials P(x) of degree < 2n+ 1 if and only if the x; are the zeroes of ®y41.

Proof. For any xq, ..., %, let Pyy1(z) = [[j_o(¥ — ;). Then any polynomial P(x) of degree
< 2n + 1 can be written in the form P(z) = Q(x)P,41(x) + R(z), where @ and R are
polynomials of degree at most n. Then the quadrature formula

b n
(10.1) / w(z)P(z)de =Y H;P(x;)

Jj=0

becomes

(10.2) /w(x)P(x)dx:/ w(x)Q(x)Pn+1(x)dx+/ w(x)R(x)dx

= ZHjQ(xj)PnH(%) + ZHJ‘R(%') - ZHjR(xj)’

J=0 Jj=0 Jj=0

since P,41(x;) = 0. Hence, the quadrature formula (10.1) will hold for any polynomial P(z)
of degree < 2n + 1 if and only if the quadrature formula (10.2) holds for all Q(z) and R(x)
of degree < n.
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Now if the z;s are the zeroes of ®,1(x), i.e., if Pi1(x) = ppq(2x), then

/ w(x)Q(x) Py (x) da —/ w(z)Q(x) Py (x)de =0

since (®,,41, Q) = 0 for all polynomials @) of degree < n. By Lemma 4, there exist constants
Hy, ..., H, such that

/ w(z)R() dr = 3 H;R(z;).

=0
Hence, (10.2) holds if the z; are the zeroes of ®,,41(x).

Now suppose (10.2) holds for all Q(z) and R(x) of degree < n. Then it must hold when
R(z) =0, i.e,

/ W(£)Q() Pa () dit = (Q, Pyar) = 0

for all @ of degree < n. By Lemma 3, P,11(z) = ¢®,11(z), ¢ # 0 and so the z;s are the
zeroes of @, 1(x). O

We next derive a formula for the error in this approximation.

Theorem 9. If the x; and H; are defined as in Lemma 4 and Theorem 8, and if f(x) € V
satsifies f"+2) is continuous in (a,b), then

b n
E= / w(x)f(z)de — Zij(g;j) — ﬁf@nﬁ)(a

for some £ € (a,b).

Proof. Denote by Q(z) the polynomial of degree < 2n + 1 which solves the Hermite inter-
polation problem Q(z;) = f(x;), Q' (x;) = f'(x;),i = 0,...,n. By Theorem 8, the Gauss
quadrature formula is exact for Q(z), i.e.,

n

| @t s = 3" () = 3 Hife).

7=0
Hence, by the error formula for polynomial interpolation,

B= [ wli@de =3 Hf@) = [ w@)fe) - Qw) ds

b n
_/ w(x)f[xo,.xo,xl,l’l,"' 7In7xn,$]H(x_$j)2dI
a 7=0

n

f(2n+2) (£x) ’ 2
- m/ w(m)[[o(m—xj) dzx

(2n+2) b
s [e@e @
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where we have used the fact that ®,,.; is the unique polynomial of degree n with leading
coefficient equal to one, with zeros at xg,...,x,. 0

Remark: It is possible to show that the H; can be computed without integrations. The

result is:
Tn

H — .
T Dy (), (2)

10.5. Examples of orthogonal polynomials. We next present standard sets of orthog-
onal polynomials corresponding to different choices of weight functions w(z) and limits of
integration a and b.

(i) a = =1, b = 1, w(x) = 1. Legendre polynomials. The corresponding quadrature
formula is called the Legendre-Gauss quadrature formula.

(ii) @ =0, b = oo, w(z) = e~ *. Laguerre polynomials.

(ii) a = —1, b =1, w(z) = 1/+/1 — 22. Chebyshev polynomials.

x

(iv) a = —o0, b = o0, w(z) = e~*". Hermite polynomials.

There are several advantanges to including a weight function w(z). When either or both
a and b are infinite, it is convenient to choose w(z) to insure convergence of the integral
of w(z)f(x), where f(z) is a polynomial of arbitrary degree (as in (ii) and (iii) above). In
singular integrals, e.g., with terms like 1/4/1 — 22, it is convenient to have formulas and
expressions for the error that do not depend on such terms.



