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13.5. Linear multistep methods. The general linear (p + 1) step method has the form

Yn+1 = Zazyn z+hzbfn )

i=—1

where f,_; = f(2n_i, yn—;) and the a; and b; are constants.

Remarks: Any of the a;s and b;s may be zero, but we assume either a, or b, is not zero
(otherwise the method would not be a p + 1 step method).

If b_y =0, then y,, 1, is expressed as a linear combination of (computationally) known past
values Yy, ..., Yn—p and thus is easily computed. Such formulas are called explicit or forward
integration formulas. If b_; # 0, then the formula is an implicit equation for y,, .1, since vy, 11
also appears on the right hand side. Such formulas are called implicit and must be solved
by an iterative procedure.

The methods are called linear because values of f,,_; enter linearly. We do not assume
that f,_; is a linear function of ¥, _;.

13.5.1. Derivation. One way of deriving such formulas is through numerical integration.
Since y' = f(x,y(z)), we have

Y(Tni1) —y(zn) = /$n+1 fz,y(x)) dx.

If we approximate the right hand side using the trapezoidal rule, i.e., replace f by a linear
interpolating polynomial and integrate, we get

(@) = y(xa) = (0/2)[f (@nsr, y(@ns1)) + f@a, y(za))] = (B/12) (&, y(€))
= (h/2)[f @1, y(@ns1)) + f@n, y(za))] = (R7/12)y"(E).

Omitting the error term, the resulting approximation scheme is:

Yn+1 = Yn + (h/2)[fn+1 + fn]

More generally, we can obtain linear multistep methods by replacing f(x,y(z)) by its inter-
polating polynomial using the points x,,z,—1,...,2,—p and then integrating between z,,_;
and x,1.

Recall that the Newton form of the interpolating polynomial interpolating g(z) at the
points Ty, Ty—1, ..., Tyn_p is given by

p k—1
:Zg[xn7axn k H I_xn z _g(xn)_’_g[xnuxn 1](5[]—[En)
= =0

+ g[Tn, o1, Tno](x — Tp) (T — Tpo1) + oo . F G[Tny oo o Tp) (T — ) - (X — i)
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In the above, we set Hj_:lo = 1. Setting g(z) = f(z,y(x)), we get

) = vlen) = [ vy = [ fapta) do

—J

p Tna1 k—1
~ Zg[wn, ey T k] / H(a: — Tp_;) dx.
k=0 Tn—j =0

n—j

We now examine some specific cases. For simplicity, we consider the case of equally spaced
points z; 1 — x; = h.

b= 0: Yn+1 = Yn—j + (] + 1)hfn
j=0: Yn+1 = Yn + hfn (Euler’s method)
j=1: Ynt1 = Yn—1 + 2hf, (Midpoint rule)

When p =1, we get

Tn+1
Yn+1 = yn—j + h(] + 1)fn + f[xna CCn—l] / ([E - xn) dCL’

Tp—j

= Yn—j + h(] + 1)fn + (1/2)]0[1%717 xn]<h2 - j2h2)
= Yoy + hfull + 5+ (1/2)(1 = j*)] + hfaoa(1/2)(* = D).

Hence, we obtain the methods:

J=0: Ynt1 = Yn + (3/2)hfn — (1/2)hfr1,
j =1: Yn+1 = Yn—1 + 2hfn>
j =2: Yn+1 = Yn—2 + (3/2)hfn + (3/2)hfn71-

All these methods are explicit methods. To get implicit methods, we use the interpolating
polynomial based on the points 1, Ty, Tn_1, ..., Tn_p41 and repeat this procedure.

Multistep methods can also be derived by using Taylor series expansions. In fact, we have
already seen how Euler’s method can be derived in this way. To get the midpoint rule, we
use the expansions

y(@n +h) = y(wn) + hy'(x,) + (h*/2)y" (x,) + (7 /6)y" (1),
y(r, —h) = y(z,) — h?//(xn) + (h2/2)y”(xn) - (h3/6)y//'(§;).

Subtracting these equations, we obtain:
Y(@n + ) —y(x, — h) = 2hy' () + (B /6)y" (&F) + (h*/6)y" (&,).

Neglecting higher order terms, we get the midpoint rule y, 11 = yn_1 + 2hf (2, yn)-
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13.5.2. Order, consistency, error constant, and local truncation error. Associated with a
given linear multistep method, we define a linear difference operator £ by
p

E[y(a:);h]:y(m—i—h)—Za,ym—zh thzy x — ih).

=0 i=—1

Expanding y(x + ih) and y/(x + ih) in a Taylor series about x and collecting terms gives
Lly(z); ] = Coy(x) + Crhy' () + - -+ CohTy' D (z) + - - -,
where the C; are constants. More specifically, we have

Clo(a)] = L= 3 alyte) + Lo [7 I PN P ’”1)!] .

1=0 ’ i=—1

Hence,

i
=

C():l—zai, 01:1— Zbl,

=0 =0 i=—1
1 p 4 p
Cj== [1 = =iy =5 ) bl(—z)fll
J: i=0 i=—1
Definition: The linear difference operator L and associated linear multistep method are
said to be of order r if Cy = C = =(C,=0and C,;1 # 0. Then C,,, is called the error
constant.

Note that £ will have order r if and only if the multistep method is exact for all polynomials
of degree < r, but not for polynomials of degree r + 1, i.e., L[z%h] = 0, ¢ = 0,...,r,
Lz" h] # 0. Now

j_

=Cyqh?+ -+ Ciqlg— 1)+ (g—j+1)a?7hI + ... 4+ Crga?'h + Cya?.
Hence if L[z%h] =0, ¢ =0,...,r, then ¢ = 0 implies Cy = 0, ¢ = 1 implies C; = 0, and
finally ¢ = r implies C. = 0.

Definition: A linear multistep method is consistent if it has order » > 1, i.e., if it is exact
for linear polynomials, i.e., if
P

p p
i—0 i=0 i=—1
If a linear multistep method has order r, then

Lz = Copa (r + WY, s0 Cry = L™ A /[(r + 1),

Definition: The local truncation error in going from x,, to x,1 is defined to be Lly(z,); h].
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If the method is of order r, then
Lly(wa); h] = ot b1y (@) + O(h™+2).
The first term on the right side of the equation above is called the principle local truncation

eIror.

To compute the local truncation error for methods defined by numerical integration, we
recall that using the error formula for polynomial interpolation and again setting g(z) =

F(z, u(z)), we get
Y1) — Y(n_y) = /
= [Ty ooy T g

> /

Hence,

Tn+1

y(2) d = / " (o) da

—J

i
Tn+1 k-1 Tnt1 p
H(m — ) dr + / 9T, .. Ty, 7] H(x — ) dx.

n—j =0 Tn—j =0

Lly(z,); h] = /Wrl GlTn, .o Tpp, ] H(x — Tp_)dx.

—J 1=0

Example: Consider the case 7 = 0. Then
p

[ —20) = (6= 20) -+ (=0 y) 2 0

=0

for x € [z, xp41]. Hence

£l ] = gl a1 L[ =) da

n =0
(p+1) Tnt1 P (p+2) Tpy1 P
g*(€) / yrr(E) /

= T — Tpyy)drx = =——25 T — Tpyi) dx.

rEa A | Stk o A § (G

When p = 0, L[y(z,); h] = h2y@(£)/2. This is Euler’s method. When p = 1, we get
(3) T4l
ety =58 [ ) - o
?J(g) &) 5h (3)

— /xnﬂ (2 — 2,)* + h(z — 2,)] do = —yP(€).
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