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13.6. Stability of linear multistep methods.

Definition: 1st and 2nd characteristic polynomial of a multistep method:

ρ(z) = zp+1 −
p

∑

i=0

aiz
p−i, σ(z) =

p
∑

i=−1

biz
p−i.

The linear multistep method is consistent if ρ(1) = 0 and ρ′(1) = σ(1). The first identity is
obvious. The second implies

(p+ 1)−
p

∑

i=0

(p− i)ai =

p
∑

i=−1

bi.

Hence

p(1−
p

∑

i=0

ai) + 1−
p

∑

i=0

(−i)ai −
p

∑

i=−1

bi = 0.

Since the first term in the sum is zero, then so is the second.

Definition: The linear multistep method is said to be zero-stable (satisfy the root condition)
if no root of the characteristic polynomial ρ(z) has modulus greater than one and if every
root of modulus one is simple.

Theorem 13. A necessary condition for convergence of a linear multistep method is that it
be zero-stable.

Proof. We only give the proof in the case that the roots of ρ(z) are real simple roots. If the
method is convergent, then it is convergent for the IVP y′ = 0, y(0) = 0, whose solution
is y(x) = 0. For this problem, the method becomes yn+1 =

∑p
i=0 aiyn−i. If the method is

convergent, then by (i), for any x > 0,

lim yhn = 0, n → ∞, h → 0, nh = x

for all solutions {yn} of the difference equation satisfying (ii) limh→0 yk(h) = 0, k = 0, . . . , p.
We first show that all roots have modulus ≤ 1. Let z = r be a real root of ρ(z). Then
yn = rn is a solution of the difference equation and so is yn = hrn. Note that this second
solution satisfies (ii). Hence, (i) must hold, i.e., limn→∞ xrn/n = 0. Now

lim
n→∞

xrn/n = x lim
n→∞

rn/n = 0

if 0 ≤ |r| ≤ 1. If r > 1, using L’Hospital’s rule,

x lim
n→∞

rn/n = x lim
n→∞

rn ln r/1 = ∞.

A similar result hold if r < −1. Hence for (i) to hold, we require |r| ≤ 1. �

Theorem 14. A necessary and sufficient condition for a linear multistep method to be
convergent is that it be consistent and zero-stable.

Proof. We have shown these conditions are necessary. The proof of sufficiency can be found
in Henrici: Discrete Variable Methods in Ordinary Differential Equations. �
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Example: Midpoint rule: yn+1 = yn−1 + 2hfn. Then p = 1, a0 = 0, a1 = 1, b−1 = 0,
b0 = 2, b1 = 0. Hence

∑p
i=0 ai = 1 and −∑p

i=0 iai +
∑p

i=1 bi = −1 + 2 = 1, so the method
is consistent. To check zero-stability, we find the roots of the characteristic polynomial
ρ(z) = zp+1 −∑p

i=0 aiz
p−i = z2 − a1 = z2 − 1. The roots are z = ±1. Since both roots have

modulus 1 and both are simple, the method is zero-stable. Hence, the method is convergent.

Question: How high an order can be achieved in a (p+1) step method if it is consistent and
zero-stable? In seeking high order methods, we automatically get consistency; zero-stability
poses a more difficult constraint. Recall that a (p+1) step method has (2p+3) coefficients,
p+ 1 ais and p+ 2 bi’s. If the method is explicit, this number is reduced by one. Hence, we
can expect at most order 2p + 2 for an implicit method and 2p + 1 for an explicit method
(recall that if a method has order r, it is exact for all polynomials of degree ≤ r). However,
the following result is known.

Theorem 15. (Dahlquist) No zero-stable p+ 1 step linear multistep method can have order
exceeeding p+ 2 when p is even or exceeding p+ 3 when p is odd.

A zero-stable p+1 step method which has order p+3 is called an optimal method. It can
be shown that for an optimal method, all the roots of ρ(z) lie on the unit circle.

Example: Simpson’s rule: yn+1 = yn−1 + (h/3)[fn+1 + 4fn + fn−1]. Since p = 1, this
is a two-step method. The local truncation error is −(1/90)h5y(5)(ξ). It is a fourth order
method, so Simpson’s rule is an optimal method. However, we shall see that Simpson’s
rule has computational disadvantages that make it unsuitable as a general purpose method.
These disadvantages are shared by all optimal order methods. Hence, we will not choose the
coefficients in a multistep method solely to achieve maximum order.

To understand this issue, consider the problem y′ = −y, y(0) = 1, whose exact solution
is y(x) = e−x. We apply the midpoint rule method yn+1 = yn−1 + 2hfn, which in this case
becomes yn+1 + 2hyn − yn−1 = 0. Since this is a linear difference equation with constant
coefficients, we solve it by first computing the roots of the characteristic polynomial ρ(z) =
z2 + 2hz − 1 = 0. Then z = −h±

√
1 + h2, so the general solution has the form

yn = C1(−h+
√
1 + h2)n + C2(−h−

√
1 + h2)n.

Set y0 = 1 and leave y1 arbitrary for the moment and solve for C1 and C2.

y0 = 1 = C1 + C2, y1 = C1(−h+
√
1 + h2) + C2(−h−

√
1 + h2).

Then

C1 =
1

2
+

y1 + h

2
√
1 + h2

, C2 =
1

2
− y1 + h

2
√
1 + h2

.

Inserting this result, we get

yn =

(

1

2
+

y1 + h

2
√
1 + h2

)

(−h+
√
1 + h2)n +

(

1

2
− y1 + h

2
√
1 + h2

)

(−h−
√
1 + h2)n.

If we compute the Taylor series of the function f(h) =
√
1 + h2 about h = 0, we get (since

f ′(0) = 0) that
f(h) = f(0) + hf ′(0) +O(h2) = 1 +O(h2).
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Hence, for h sufficiently small, the term −h +
√
1 + h2 = 1 − h + O(h2) < 1 and so (−h +√

1 + h2)n → 0 as n → ∞. However, | − h −
√
1 + h2| = 1 + h + O(h2) > 1, so that unless

we choose y1 so that 1
2
− y1+h

2
√
1+h2

= 0, limn→∞ |yn| = ∞.

The above is an example of numerical instability. The true solution e−x → 0 as x = nh →
∞, while for fixed h the approximate solution → ∞ as n → ∞.

However, if we consider the convergence of the sequence {yhn} as h → 0, n → ∞ and
x = nh and make the assumption that limh→0 y

h
1 = y0 = 1, then

lim
h→0

(

1

2
+

y1 + h

2
√
1 + h2

)

= 1, lim
h→0

(

1

2
− y1 + h

2
√
1 + h2

)

= 0.

Furthermore, for x = nh,

lim
h→0,n→∞

(−h+
√
1 + h2)n = lim

h→0
[(−h+

√
1 + h2)1/h]x.

Let y = limh→0[(−h+
√
1 + h2)1/h]. Then

ln y = lim
h→0

[ln(−h+
√
1 + h2)/h] = lim

h→0

2h
2
√
1+h2

− 1
√
1 + h2 − h

= −1.

Hence, ln y = −1 so y = e−1. Then

lim
h→0,n→∞

C1(−h+
√
1 + h2)n = e−x.

Thus, the first part of the solution of the difference equation gives an approximation to the
true solution of the differential equation. One can easily show that |(−h−

√
1 + h2)n| ≤ ex.

Hence, the second term is converging to zero, so the approximate solution is converging to
the true solution.

To summarize, one root of the characteristic polynomial gives a solution that approximates
the true solution. A second root gives a parasitic solution which for fixed h eventually blows
up to give a bad overall approximation. Since the method converges, for any x and ǫ, one
can find a value of h such that |yhn − e−x| < ǫ. However, since the parasitic solution grows
like ex, this h would have to be impractically small for any reasonable size x.


