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13.6. Stability of linear multistep methods.
Definition: 1st and 2nd characteristic polynomial of a multistep method:

p

P
p(z) = 22T — Z a; 2P, o(z) = Z bz

=0 i=—1

The linear multistep method is consistent if p(1) = 0 and p'(1) = o(1). The first identity is
obvious. The second implies

p p
(p+1) =D (p—i)ai=> b
1=0 =—1
Hence
p p p
pL=) a)+1=) (—i)a;— > b =0.
i=0 i=0 i=—1

Since the first term in the sum is zero, then so is the second.

Definition: The linear multistep method is said to be zero-stable (satisfy the root condition)
if no root of the characteristic polynomial p(z) has modulus greater than one and if every
root of modulus one is simple.

Theorem 13. A necessary condition for convergence of a linear multistep method is that it
be zero-stable.

Proof. We only give the proof in the case that the roots of p(z) are real simple roots. If the
method is convergent, then it is convergent for the IVP ¢ = 0, y(0) = 0, whose solution
is y(x) = 0. For this problem, the method becomes yn+1 = > ¢ ajyn—;. If the method is
convergent, then by (i), for any x > 0,

limyZ:O, n—oo, h—0, nh=ux

for all solutions {y,} of the difference equation satisfying (ii) limy, o yx(h) =0, k =0,...,p.
We first show that all roots have modulus < 1. Let z = r be a real root of p(z). Then
Yy, = r" is a solution of the difference equation and so is y, = hr". Note that this second
solution satisfies (ii). Hence, (i) must hold, i.e., lim, o x7r™"/n = 0. Now

lim zr"/n =2 lim ™ /n =0

if 0 <|r| < 1. If r > 1, using L’Hospital’s rule,

z lim 7" /n =2z lim r"Inr/1 = co.
n—oQ n—oo

A similar result hold if » < —1. Hence for (i) to hold, we require |r| < 1. O

Theorem 14. A necessary and sufficient condition for a linear multistep method to be
convergent is that it be consistent and zero-stable.

Proof. We have shown these conditions are necessary. The proof of sufficiency can be found
in Henrici: Discrete Variable Methods in Ordinary Differential Equations. 0]
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Example: Midpoint rule: y,.1 = yp—1 + 2hf,. Then p =1, a9 =0, a; = 1, b_; = 0,
bo =2, by =0. Hence Y % ja; =1 and — Y jia; + > 5 by = =1 +2 =1, so the method
is consistent. To check zero-stability, we find the roots of the characteristic polynomial
p(z) = 2P =3P a;zP7" = 2% — ay = 2% — 1. The roots are z = £1. Since both roots have
modulus 1 and both are simple, the method is zero-stable. Hence, the method is convergent.

Question: How high an order can be achieved in a (p+1) step method if it is consistent and
zero-stable? In seeking high order methods, we automatically get consistency; zero-stability
poses a more difficult constraint. Recall that a (p+ 1) step method has (2p + 3) coefficients,
p+1a;s and p+ 2 b;’s. If the method is explicit, this number is reduced by one. Hence, we
can expect at most order 2p + 2 for an implicit method and 2p + 1 for an explicit method
(recall that if a method has order r, it is exact for all polynomials of degree < r). However,
the following result is known.

Theorem 15. (Dahlquist) No zero-stable p+ 1 step linear multistep method can have order
exceeeding p + 2 when p is even or exceeding p + 3 when p is odd.

A zero-stable p+ 1 step method which has order p+ 3 is called an optimal method. It can
be shown that for an optimal method, all the roots of p(z) lie on the unit circle.

Example: Simpson’s rule: y,11 = yn_1 + (B/3)[fos1 + 4fn + fuo1]. Since p = 1, this
is a two-step method. The local truncation error is —(1/90)h%y®)(£). Tt is a fourth order
method, so Simpson’s rule is an optimal method. However, we shall see that Simpson’s
rule has computational disadvantages that make it unsuitable as a general purpose method.
These disadvantages are shared by all optimal order methods. Hence, we will not choose the
coefficients in a multistep method solely to achieve maximum order.

To understand this issue, consider the problem ¢y = —y, y(0) = 1, whose exact solution
is y(z) = e~*. We apply the midpoint rule method vy, 11 = y,_1 + 2hf,, which in this case
becomes y,1+1 + 2hy, — y,—1 = 0. Since this is a linear difference equation with constant
coefficients, we solve it by first computing the roots of the characteristic polynomial p(z) =
2?24+ 2hz —1=0. Then z = —h £ v/1 + h?2, so the general solution has the form

Yn = Cr(=h + V1+h2)" + Co(—h — V1+ h2)".

Set yo = 1 and leave y; arbitrary for the moment and solve for C; and Cs.
y0:1201+02, ylzcl(—h+V1—|—h2)+Cg(—h—V1+h2)

Then

C_1+M C_l_M
LS RSy vk T2 oI+

Inserting this result, we get
1 U+ h ) (1 Y+ h )
Y (R £ L O VA ) Ly (e S | S 21
=5 o) ") )
If we compute the Taylor series of the function f(h) = /14 h% about h = 0, we get (since
f'(0) = 0) that
f(h) = £(0) + hf'(0) + O(h*) = 1+ O(R?).
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Hence, for h sufficiently small, the term —h + 1+ h? =1 —h+ O(h?*) < 1 and so (—h +

V1+h?)" — 0 as n — oo. However, | —h — 1+ h?| =1+ h+ O(h?) > 1, so that unless

1 th o1 _
we choose y; so that 5 — Q\y/ﬁ =0, lim,, o0 |y, | = 00.

The above is an example of numerical instability. The true solution e™ — 0 as x = nh —
0o, while for fixed h the approximate solution — oo as n — oc.

However, if we consider the convergence of the sequence {y"} as h — 0, n — oo and
r = nh and make the assumption that limy, oy = 3o = 1, then

1im(1 pth ) 1 lim(l—M)—
h—0 2v1+ h? T =0 \2 0 2y/T 4 A2
Furthermore, for x = nh,

lim (—h+ VIR = lim[(—h+ V1 + h2)1/he.

—0,n—00
Let y = limy,_o[(—h + v/1 + h2)Y"]. Then

2h
—~1

Iny = hm[ln( h+V1+h?)/h] = }llgr(l)m =—1.

Hence, Iny = —1 so y = e~!. Then

lim Ci(=h+V1+h?)" =

h—0,n—00

Thus, the first part of the solution of the difference equation gives an approximation to the
true solution of the differential equation. One can easily show that |(—h — /1 4+ h%)"| < e”.
Hence, the second term is converging to zero, so the approximate solution is converging to
the true solution.

To summarize, one root of the characteristic polynomial gives a solution that approximates
the true solution. A second root gives a parasitic solution which for fixed h eventually blows
up to give a bad overall approximation. Since the method converges, for any x and €, one
can find a value of h such that |y" — e™®| < e. However, since the parasitic solution grows
like e, this h would have to be impractically small for any reasonable size x.



