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4. SPLINE APPROXIMATION

4.1. Cubic spline interpolation. We consider the problem of finding a C? piecewise cubic
function S(z) that satisfies S(x;) = f(x;), 7 =0,...,n plus two additional conditions. These
are usually taken to be either S”(x¢) = f”(x¢) and S”"(x,) = f"(x,) or S'(zo) = f'(z0) and
S'(z,) = f'(x,). We will consider the first set of conditions.

We will obtain S(z) by first obtaining S”(z) and then integrating. Since S”(z) is a
continuous piecewise linear function, it is uniquely determined by the values S”(x;), i =
0,...,n. On the subinterval [z; 1, x;], we can write it in the form

Ti — X

§"(@) = SY (@) = =" (@) + 8" (@),
where h; = x; — x;_1. Integrate twice on each subinterval to get
S,(x) h? [z; —x 35,,< )+h? T — T SS”( )—l—AIi_x—i—Bm_xi_l
i == Li— | T Ty i i .
. 6 h; ! 6 h; hi hi

Note: Integrating twice introduces an arbitrary linear function that we represent as above.

h? h?
Now f(@im1) = Si(wim1) = EZS”(%‘—Q + Ai, f(xi) = Si(z;) = EZS”(%‘) + B;.
Hence,
h? z—x]? . h? v —x 41" "
h? " r, —x h? 7 T — Ti—1
+ [f(wic1) — ES (zi-1)] i + [f(z:) — gs (%’)]h—i-

We next determine the values of S”(x;) by the conditions that S’ is continuous at each z;,
ie., Si(x;) =95 (x;), 1 =1,...,n— 1. Now

2 1 2 1
= [f(zi1) — gl '/(xz—l)]E + [f(w:) — gl ”(%)]—Z
Then
hi " hl "
Si(r) = 8" @)+ 8 i) + - [f (@) — Flmi)],
hi 1 A hz 1 an
Sipa(wi) = —TJFS (@) — g S"(wiv1) + i [f (@) = flzi)]-

Equating these quantities to insure continuity, we get:

hi+ b hy
THSH(%’) - glsﬁ@m) = fli, wira] — flawioy, @],

hi "
ES (132;1) +
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Thus, the n—1 quantities S”(x1), ..., S”(z,_1) are determined by solving the linear system
(h1+h2)/3 hy/6 S"(z4)

h2/6 (hg + hg)/3 h3/6 tee S”(.’L'Q)

B /6 (B 4 ho)/3) \S7(n )
flzr, wa] — flzo, 21] — haf"(20)/6
f[1‘27 5U3] - f[iEh 5U2]

f[xnfla xn] - f[xnf% xnfl] - hnf”(xn)/6

To check that the matrix is nonsingular, we can use the following result.

Theorem 2. Let A = (a;j) be an N x N matriz. If |a;| > > .. |ai;l, i =1,2,..., N, then
A is nonsingular.

i#]

Proof. Suppose A is singular. Then there is a vector x # 0 such that Zjvzl a;jz; = 0 for
i=1,...,N. Let k satisfy |zx| > [z;], j # k. Note [z # 0. Since agrar = — ;4 arjv;,
|ak|[zk] < 3254, lar;||2;]. Hence
] <Y g (2] /|zel) <D lawg -
j#k J#k
Contradiction. O

4.2. Spline basis functions. Any spline function of degree n can be expressed as a linear
combination of B-splines (basis functions).

Given a set of knots tg,%1,...t,,, we show how to define a B-spline basis B;,, where n
denotes the degree of the spline, and 7 denotes the associated knot.

The definition is by the following recursion formula (Cox-de Boor)

wo 0 otherwise

r — ti ti k — X

By = —B;r1(x) + LB@#l,k—l(l‘)-
livk — i bivkt1 — tig1
So when k = 1, we have
Biy = ——B;o(x) + LBHLO(@
tiv1 — Livo — i1
If we insert the definitions of B, and B;1;, we see that

Bix = (tiza — ) /(tiza — tiv1) if i1 <o <tiga,

0 otherwise.
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Note, B; 1 is nonzero on only two subintervals.

To compute B; 2, we need B, (which is non-zero only on the interval [t;,t;12]) and B;y1;
(which is non-zero only on the interval [¢;11,?;+3]). Hence B; > will be non-zero only on three
subintervals. Continuing in this way, B; 3 will be non-zero only on four subintervals.

To see how the recursion goes, we compute B; s.

r—1; livs —

B@Q(SL’) = Bi’l(Q?) —+ BZ'JrLl(SL’)
Livo — 1 Livs — lit1
l’-tz |:CC—tZ tz‘+2—ZL‘
) Bl = 2% ]
liyo —ti Lt — 14 i0() livo — tig1 +1.0(2)
tizs — T r—t; tixs — @
4 lies [ i+1 Bis1o(z) + LBH—Q,O(I)]
Livg — Liy1 Llipo — iy Livs — livo
_ (v —t;)? B.o+ [ (x — i) (tir2 — @) (x = tiv1) (tirs — 2) Biiio
(tivo — ti)(tig1 — 1) " (tivr — t:)(tivo — tiv1)  (figo — tig1) (i — )47
(tiys — )
+ Biya0.

(tixs — tiz1)(tivs — tiv2)
Note that by the definition of B;, the polynomial coefficient of B, gives the definition of
B, »(z) on the subinterval t; < z < t,44.

In this notation, we have associated the basis function B, to the knot ¢;. For k odd, we
often prefer to associate it to the middle knot. For example, given a mesh a = 2y < z; <
... < zy = b we would define the basis function ¢;; associated to the mesh point x; by

(x —xi1) /(s —xiy) fx g <zx<um
Gix = (i1 — )/ (i1 — x;) if 2, <@ <4,
0 otherwise.

Graph of ¢;1(x), called the hat function

Ti—1 Xy Tit1
When the mesh points are equally spaced, we can simplify the process. For example, to
get a basis for the space of cubic splines defined on the partition a = zo < ... < z, = b,
where x;.1 — x; = h, we first compute the cubic spline basis function Bs; on the knots
{—2,—-1,0,1,2} and then define for i = —1,...,n+ 1, the B-spline ¢, 3(x) = Bs([x — z;]/h),
where we restrict these functions to the interval [a,b]. This gives the required n + 3 basis
functions. Note that ¢;3(x) > 0 and one can show that ) ¢; 3(z) = 1,
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FiGURE 2. B-Spline By

4.3. Error in cubic spline interpolation. One can derive the following error estimates
for cubic spline interpolation. Again, we consider only the case when S”(a) = f”(a) and

S"(b) = f"(b).
Theorem 3. There exists constants Cy, C1, and Cy, independent of f, such that
max |f(x) — S(z)| < Coh* My, max |f'(x) — S'(z)] < CLh> My,

a<z<b

max |f(x) — S"(z)] < Coh®My,

a<z<b

where My = max,<z<p ’f4(33)‘

Splines have applications in computer graphics when smooth curves are desired. Consid-
ering the case of equally spaced points, we can use the B-spline basis defined previously to
write any cubic spline S(t) satisfying S”(to) = S”(t,) = 0 in the form

S(t) = Z Pidis(t),

where ¢; 3(t) is the cubic spline basis function centered at ¢t = ¢;. In this case, the values p;,
which are the degrees of freedom for S(t), are called control points. Note that S(t;) # p;.
An important aspect of this type of basis is that since each basis function ¢; 3(¢) is nonzero
only on the four subintervals [t; o, t; 1], [ti—i, ti], [ti, tiv1], [tiv1, tire], if we change the value
of the control point p;, we only change the value of S on these four subintervals.

Consider the interval [—1,1] and an equally spaced mesh of width 1/8. The following
pictures show first a graph of a B-spline basis function centered at ¢ = 0 (and hence nonzero
only on the interval [—1/4,1/4] and then a graph of another choice of basis function, i.e., a
cubic spline that is equal to one at t = 0, equal to zero at the other mesh points +i/8,i =
1,2,...,8. Note that the second graph is different from zero on more than four subintervals.
In fact, as seen in the final plot showing a magnified view of the second graph on the interval
.5, 1], although the value of the this spline is small, it is not zero on any of the subintervals.
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