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4. Spline approximation

4.1. Cubic spline interpolation. We consider the problem of finding a C2 piecewise cubic
function S(x) that satisfies S(xi) = f(xi), i = 0, . . . , n plus two additional conditions. These
are usually taken to be either S ′′(x0) = f ′′(x0) and S ′′(xn) = f ′′(xn) or S

′(x0) = f ′(x0) and
S ′(xn) = f ′(xn). We will consider the first set of conditions.

We will obtain S(x) by first obtaining S ′′(x) and then integrating. Since S ′′(x) is a
continuous piecewise linear function, it is uniquely determined by the values S ′′(xi), i =
0, . . . , n. On the subinterval [xi−1, xi], we can write it in the form

S ′′(x) = S ′′
i (x) =

xi − x

hi

S ′′(xi−1) +
x− xi−1

hi

S ′′(xi),

where hi = xi − xi−1. Integrate twice on each subinterval to get

Si(x) =
h2
i

6

[

xi − x

hi

]3

S ′′(xi−1) +
h2
i

6

[

x− xi−1

hi

]3

S ′′(xi) + Ai

xi − x

hi

+Bi

x− xi−1

hi

.

Note: Integrating twice introduces an arbitrary linear function that we represent as above.

Now f(xi−1) = Si(xi−1) =
h2
i

6
S ′′(xi−1) + Ai, f(xi) = Si(xi) =

h2
i

6
S ′′(xi) + Bi.

Hence,

Si(x) =
h2
i

6

[

xi − x

hi

]3

S ′′(xi−1) +
h2
i

6

[

x− xi−1

hi

]3

S ′′(xi)

+ [f(xi−1)−
h2
i

6
S ′′(xi−1)]

xi − x

hi

+ [f(xi)−
h2
i

6
S ′′(xi)]

x− xi−1

hi

.

We next determine the values of S ′′(xi) by the conditions that S ′ is continuous at each xi,
i.e., S ′

i(xi) = S ′
i+1(xi), i = 1, . . . , n− 1. Now

S ′
i(x) = −

hi

2

[

xi − x

hi

]2

S ′′(xi−1) +
hi

2

[

x− xi−1

hi

]2

S ′′(xi)

− [f(xi−1)−
h2
i

6
S ′′(xi−1)]

1

hi

+ [f(xi)−
h2
i

6
S ′′(xi)]

1

hi

.

Then

S ′
i(xi) =

hi

3
S ′′(xi) +

hi

6
S ′′(xi−1) +

1

hi

[f(xi)− f(xi−1)],

S ′
i+1(xi) = −

hi+1

3
S ′′(xi)−

hi+1

6
S ′′(xi+1) +

1

hi+1

[f(xi+1)− f(xi)].

Equating these quantities to insure continuity, we get:

hi

6
S ′′(xi−1) +

hi + hi+1

3
S ′′(xi) +

hi+1

6
S ′′(xi+1) = f [xi, xi+1]− f [xi−1, xi].
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Thus, the n−1 quantities S ′′(x1), . . . , S
′′(xn−1) are determined by solving the linear system









(h1 + h2)/3 h2/6 · · · · · ·
h2/6 (h2 + h3)/3 h3/6 · · ·
· · · · · · · · · · · ·
· · · · · · hn−1/6 (hn−1 + hn)/3

















S ′′(x1)
S ′′(x2)
· · ·

S ′′(xn−1)









=









f [x1, x2]− f [x0, x1]− h1f
′′(x0)/6

f [x2, x3]− f [x1, x2]
· · ·

f [xn−1, xn]− f [xn−2, xn−1]− hnf
′′(xn)/6









To check that the matrix is nonsingular, we can use the following result.

Theorem 2. Let A = (aij) be an N ×N matrix. If |aii| >
∑

i 6=j |aij|, i = 1, 2, . . . , N , then

A is nonsingular.

Proof. Suppose A is singular. Then there is a vector x 6= 0 such that
∑N

j=1
aijxj = 0 for

i = 1, . . . , N . Let k satisfy |xk| ≥ |xj|, j 6= k. Note |xk| 6= 0. Since akkxk = −
∑

j 6=k akjxj,

|akk||xk| ≤
∑

j 6=k |akj||xj|. Hence

|akk| ≤
∑

j 6=k

|akj|(|xj|/|xk|) ≤
∑

j 6=k

|akj|.

Contradiction. �

4.2. Spline basis functions. Any spline function of degree n can be expressed as a linear
combination of B-splines (basis functions).

Given a set of knots t0, t1, . . . tm, we show how to define a B-spline basis Bi,n, where n
denotes the degree of the spline, and i denotes the associated knot.

The definition is by the following recursion formula (Cox-de Boor)

Bi,0 :=

{

1 if ti ≤ x < ti+1

0 otherwise

Bi,k :=
x− ti

ti+k − ti
Bi,k−1(x) +

ti+k+1 − x

ti+k+1 − ti+1

Bi+1,k−1(x).

So when k = 1, we have

Bi,1 =
x− ti
ti+1 − ti

Bi,0(x) +
ti+2 − x

ti+2 − ti+1

Bi+1,0(x)

If we insert the definitions of Bi,0 and Bi+1,0, we see that

Bi,1 =











(x− ti)/(ti+1 − ti) if ti ≤ x < ti+1

(ti+2 − x)/(ti+2 − ti+1) if ti+1 ≤ x < ti+2,

0 otherwise.
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Note, Bi,1 is nonzero on only two subintervals.

To compute Bi,2, we need Bi,1 (which is non-zero only on the interval [ti, ti+2]) and Bi+1,1

(which is non-zero only on the interval [ti+1, ti+3]). Hence Bi,2 will be non-zero only on three
subintervals. Continuing in this way, Bi,3 will be non-zero only on four subintervals.

To see how the recursion goes, we compute Bi,2.

Bi,2(x) =
x− ti
ti+2 − ti

Bi,1(x) +
ti+3 − x

ti+3 − ti+1

Bi+1,1(x)

=
x− ti
ti+2 − ti

[ x− ti
ti+1 − ti

Bi,0(x) +
ti+2 − x

ti+2 − ti+1

Bi+1,0(x)
]

+
ti+3 − x

ti+3 − ti+1

[ x− ti+1

ti+2 − ti+1

Bi+1,0(x) +
ti+3 − x

ti+3 − ti+2

Bi+2,0(x)
]

=
(x− ti)

2

(ti+2 − ti)(ti+1 − ti)
Bi,0 +

[ (x− ti)(ti+2 − x)

(ti+2 − ti)(ti+2 − ti+1)
+

(x− ti+1)(ti+3 − x)

(ti+2 − ti+1)(ti+3 − ti+1)

]

Bi+1,0

+
(ti+3 − x)2

(ti+3 − ti+1)(ti+3 − ti+2)
Bi+2,0.

Note that by the definition of Bj,0, the polynomial coefficient of Bj,0 gives the definition of
Bi,2(x) on the subinterval tj ≤ x < tj+1.

In this notation, we have associated the basis function Bi,k to the knot ti. For k odd, we
often prefer to associate it to the middle knot. For example, given a mesh a = x0 < x1 <
. . . < xN = b we would define the basis function φi,1 associated to the mesh point xi by

φi,1 =











(x− xi−1)/(xi − xi−1) if xi−1 ≤ x < xi

(xi+1 − x)/(xi+1 − xi) if xi ≤ x < xi+1,

0 otherwise.

Graph of φi,1(x), called the hat function

�
�
�@

@
@

xi xi+1xi−1

When the mesh points are equally spaced, we can simplify the process. For example, to
get a basis for the space of cubic splines defined on the partition a = x0 < . . . < xn = b,
where xi+1 − xi = h, we first compute the cubic spline basis function B3 on the knots
{−2,−1, 0, 1, 2} and then define for i = −1, . . . , n+1, the B-spline φi,3(x) = B3([x− xi]/h),
where we restrict these functions to the interval [a, b]. This gives the required n + 3 basis
functions. Note that φi.3(x) ≥ 0 and one can show that

∑

φi,3(x) = 1,
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Figure 2. B-Spline B3

4.3. Error in cubic spline interpolation. One can derive the following error estimates
for cubic spline interpolation. Again, we consider only the case when S ′′(a) = f ′′(a) and
S ′′(b) = f ′′(b).

Theorem 3. There exists constants C0, C1, and C2, independent of f , such that

max
a≤x≤b

|f(x)− S(x)| ≤ C0h
4M4, max

a≤x≤b
|f ′(x)− S ′(x)| ≤ C1h

3M4,

max
a≤x≤b

|f ′′(x)− S ′′(x)| ≤ C2h
2M4,

where M4 = maxa≤x≤b |f
4(x)|.

Splines have applications in computer graphics when smooth curves are desired. Consid-
ering the case of equally spaced points, we can use the B-spline basis defined previously to
write any cubic spline S(t) satisfying S ′′(t0) = S ′′(tn) = 0 in the form

S(t) =
n

∑

i=0

piφi,3(t),

where φi,3(t) is the cubic spline basis function centered at t = ti. In this case, the values pi,
which are the degrees of freedom for S(t), are called control points. Note that S(ti) 6= pi.
An important aspect of this type of basis is that since each basis function φi,3(t) is nonzero
only on the four subintervals [ti−2, ti−1], [ti−i, ti], [ti, ti+1], [ti+1, ti+2], if we change the value
of the control point pi, we only change the value of S on these four subintervals.

Consider the interval [−1, 1] and an equally spaced mesh of width 1/8. The following
pictures show first a graph of a B-spline basis function centered at t = 0 (and hence nonzero
only on the interval [−1/4, 1/4] and then a graph of another choice of basis function, i.e., a
cubic spline that is equal to one at t = 0, equal to zero at the other mesh points ±i/8, i =
1, 2, . . . , 8. Note that the second graph is different from zero on more than four subintervals.
In fact, as seen in the final plot showing a magnified view of the second graph on the interval
[.5, 1], although the value of the this spline is small, it is not zero on any of the subintervals.
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