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8. Approximation of Integrals

Basic idea: replace the function by its interpolating polynomial and use the integral of the
interpolating polynomial as an approximation to the integral of the function.

8.1. Basic Numerical Integration Rules. Let Pn be the polynomial of degree ≤ n in-
terpolating f at x0, . . . , xn. Then f(x) = Pn(x) + f [x0, . . . , xn, x]ψn(x), where ψn(x) =
∏n

j=0(x− xj). Hence,
∫ b

a

f(x) dx =

∫ b

a

Pn(x) dx+

∫ b

a

f [x0, . . . , xn, x]ψn(x) dx.

To simplify the error formula, we can use the Mean Value Theorem for integrals, i.e.,

Theorem 4. Let g(x) be integrable and of one sign on [a, b]. If F (x) is continuous on [a, b],
then

∫ b

a

F (x)g(x) dx = F (ξ)

∫ b

a

g(x) dx, for some ξ ∈ [a, b].

Applying this theorem, we get that if ψn(x) is of one sign on (a, b), then
∫ b

a

f(x) dx =

∫ b

a

Pn(x) dx+ f [x0, . . . , xn, ξ]

∫ b

a

ψn(x) dx.

Furthermore, if f ∈ Cn+1, then

E(f) ≡

∫ b

a

[f(x)− Pn(x)] dx =
1

(n+ 1)!
f (n+1)(η)

∫ b

a

ψn(x) dx.

There is then a further simplification, since ψn(x) can be integrated exactly.

Another case when the error formula can be simplified is when
∫ b

a
ψn(x) dx = 0. Noting

that

f [x0, . . . , xn, xn+1, x] = f [xn+1, x0, . . . , xn, x] =
f [x0, . . . , xn, x]− f [xn+1, x0, . . . , xn]

x− xn+1

=
f [x0, . . . , xn, x]− f [x0, . . . , xn, xn+1]

x− xn+1

,

we get the identity:

f [x0, . . . , xn, x] = f [x0, . . . , xn, xn+1] + f [x0, . . . , xn, xn+1, x](x− xn+1).

Hence, if
∫ b

a
ψn(x) dx = 0,

E(f) =

∫ b

a

f [x0, . . . , xn, x]ψn(x) dx = f [x0, . . . , xn, xn+1]

∫ b

a

ψn(x) dx

+

∫ b

a

f [x0, . . . , xn, xn+1, x](x−xn+1)ψn(x) dx =

∫ b

a

f [x0, . . . , xn, xn+1, x](x−xn+1)ψn(x) dx.
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If we can choose xn+1 ∈ [a, b] so that (x− xn+1)ψn(x) is of one sign in (a, b), then we will
get

E(f) = f [x0, . . . , xn, xn+1, ξ]

∫ b

a

(x− xn+1)ψn(x) dx

=
1

(n+ 2)!
f (n+2)(η)

∫ b

a

(x− xn+1)ψn+1(x) dx,

for some η ∈ [a, b].

Examples:

n = 0. f(x) = f(x0) + f [x0, x](x− x0). Then
∫ b

a

f(x) dx = (b− a)f(x0) +

∫ b

a

f [x0, x](x− x0) dx.

If x0 = a, then ψ0(x) = x− a is of one sign, so
∫ b

a

f(x) dx = (b− a)f(a) + f ′(η)

∫ b

a

(x− a) dx = (b− a)f(a) + f ′(η)(b− a)2/2.

If x0 = b, then ψ0(x) = x− b is of one sign, so
∫ b

a

f(x) dx = (b− a)f(b) + f ′(η)

∫ b

a

(x− b) dx = (b− a)f(b)− f ′(η)(b− a)2/2.

These formulas are known as rectangle rules.

If x0 = (a+ b)/2, then ψ0(x) is not of one sign on (a, b), but
∫ b

a
ψ0(x) dx = 0. If we choose

x1 = x0, then ψ1(x) = (x− x0)
2 is of one sign, so we obtain

∫ b

a

f(x) dx = (b− a)f([a+ b]/2) +
1

2!
f ′′(η)

∫ b

a

[x− (a+ b)/2]2 dx

= (b− a)f([a+ b]/2) +
1

24
f ′′(η)(b− a)3.

This formula is called the midpoint rule.

n = 1. f(x) = f(x0) + f [x0, x1](x− x0) + f [x0, x1, x](x− x0)(x− x1). If we choose x0 = a
and x1 = b, then ψ1(x) = (x− a)(x− b) is always of one sign on (a, b), so we get

∫ b

a

f(x) dx =

∫ b

a

{f(a) + f [a, b](x− a)} dx+
1

2!
f ′′(η)

∫ b

a

(x− a)(x− b) dx

= f(a)(b− a) + f [a, b](b− a)2/2−
1

12
f ′′(η)(b− a)3

=
b− a

2
[f(a) + f(b)]−

1

12
f ′′(η)(b− a)3.

Formula called Trapezoidal Rule.
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n = 2. f(x) = f(x0)+ f [x0, x1](x−x0)+ f [x0, x1, x2](x−x0)(x−x1)+ f [x0, x1, x2, x](x−
x0)(x−x1)(x−x2). Now for x0, x1, x2 distinct points in [a, b], ψ2(x) = (x−x0)(x−x1)(x−x2)

is not of one sign in [a, b]. But if x0 = a, x1 = (a + b)/2, x2 = b, then
∫ b

a
ψ2(x) dx = 0. If

we choose x3 = x1, then ψ3(x) = (x− a)(x− [a+ b]/2)2(x− b), which is of one sign in [a, b].
Hence, we get the error formula

∫ b

a

f(x) dx−

∫ b

a

P2(x) dx = −
1

90

(

b− a

2

)5

f (4)(η).

The resulting quadrature formula is:

∫ b

a

f(x) dx ≈
b− a

6
[f(a) + 4f([a+ b]/2) + f(b)], Simpson’s rule.

In general, formulas obtained by integrating interpolation points using equally spaced
interpolation points are called Newton-Cotes quadrature formulas. There are two types: (1)
closed formulas in which the end points of the interval are used in the integration formula
and (2) open formulas in which the end points of the interval are not used and the other
points are symmetrically placed.

8.2. Composite Numerical Integration Rules. In practice, we use composite formulas
based on integration of piecewise polynomials, i.e., we subdivide the interval [a, b] into subin-

tervals [xi−1, xi], where a = x0 < x1 < . . . < xN = b and use the fact that
∫ b

a
f(x) dx =

∑N
i=1

∫ xi

xi−1

f(x) dx. We then approximate each of integrals
∫ xi

xi−1

f(x) dx by one of the formu-

las just developed and add the results.

Consider the case when the interpolation points are equally spaced, i.e., xi = a + ih,
i = 0, . . . N , so that h = (b− a)/N . Set fs = f(a + sh) so that fi = f(xi). We then obtain
the following composite quadrature formulas.

Example: Composite Midpoint rule
∫ xi

xi−1

f(x) dx = hfi−1/2 + h3f (2)(ξi)/24, ξi ∈ [xi−1, xi]

so that
∫ b

a

f(x) dx = h

N
∑

i=1

fi−1/2 +
h3

24

N
∑

i=1

f (2)(ξi).

The error term can be simplified by using the mean value theorem for sums:

Theorem 5. Let F (x) be a continuous function on [a, b], let x1, · · · , xn be points in [a, b],
and let g1, · · · , gn be real numbers all of one sign. Then

∑n
i=1 F (xi)gi = F (ξ)

∑n
i=1 gi for

some ξ ∈ [a, b].
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Choosing F (x) = f (2)(x), xi = ξi, gi = h3/24, and using the fact that Nh = b− a, we get
that if f (2) is continuous on [a, b], then

∫ b

a

f(x) dx− h

N
∑

i=1

fi−1/2 =
h3

24
Nf (2)(ξ) =

b− a

24
h2f (2)(ξ).

Note that if |f (2)(x)| ≤ M for all x ∈ [a, b], then by choosing h sufficiently small, we can
achieve any desired accuracy (neglecting roundoff error in the computation).

Composite Trapezoidal rule:
∫ xi

xi−1

f(x) dx =
h

2
[fi−1 + fi]− h3f (2)(ξi)/12, ξi ∈ [xi−1, xi]

so that
∫ b

a

f(x) dx =
h

2

N
∑

i=1

[fi−1 + fi]−
h3

12

N
∑

i=1

f (2)(ξi)

= h[
1

2
f0 + f1 + f2 + · · ·+ fN−1 +

1

2
fN ]−

b− a

12
h2f (2)(ξ).

Composite Simpson’s rule: (on N subintervals)
∫ xi

xi−1

f(x) dx =
h

6
[fi−1 + 4fi−1/2 + fi]−

1

90

(

h

2

)5

f (4)(ξi), ξi ∈ [xi−1, xi]

so that
∫ b

a

f(x) dx =
h

6

N
∑

i=1

[fi−1 + 4fi−1/2 + fi]−
1

90

(

h

2

)5 N
∑

i=1

f (4)(ξi)

=
h

6
[f0 + fN + 2

N−1
∑

i=1

fi + 4
N
∑

i=1

fi−1/2]−
b− a

180

(

h

2

)4

f (4)(ξ).

If an upper bound on the proper derivative is known on the interval [a, b], then the error
formula could be used to determine a value of h (or equivalently the number of subintervals)
that would guarantee any desired accuracy. Since often a bound is not known, or even if
known is a worst case estimate, one does not usually precalculate the number of subinter-
vals needed to guarantee a given accuracy. In the next sections, we shall consider more
computationally efficient approaches to finding accurate approximations to the integral.


