
2 MATH 574 LECTURE NOTES

1. Solution of linear systems of equations by direct methods

We consider the problem of finding a vector x = (x1, x2, · · · , xn)
T satisfying the linear

system of equations Ax = b, where A = (aij) is the square matrix

A =









a11 a12 · · · a1n
a21 a22 · · · a2n
· · · · · · · · · · · ·
an1 an2 · · · ann









and b = (b1, b2, · · · , bn)
T is a given vector.

The issue is not finding an analytic solution (since Cramer’s rule gives a formula for it if
A is non-singular), but of finding an efficient computational algorithm. We shall consider
this problem for two types of matrices: matrices with few zero elements and sparse matrices
(many zero elements) and often with n large. Large sparse matrices typically occur when
partial differential equations are discretized by numerical approximation schemes. We shall
study two types of solution methods: direct and iterative.

1.1. Gaussian elimination and LU factorization. The direct methods we study are all
variations of Gaussian elimination. In this approach, to solve the system

a11x1 + a12x2 + · · ·+ a1nxn = b1 ≡ a1,n+1

a21x1 + a22x2 + · · ·+ a2nxn = b2 ≡ a2,n+1

· · · · · ·

an1x1 + an2x2 + · · ·+ annxn = bn ≡ an,n+1,

we subtract for i = 2, · · · , n, ai1/a11 times the first equation from the ith equation. We then
obtain the derived system:

a11x1 + a12x2 + · · ·+ a1nxn = b1 ≡ a1,n+1

a
(1)
22 x2 + · · ·+ a

(1)
2nxn = b

(1)
2 ≡ a

(1)
2,n+1

· · · · · ·

a
(1)
n2x2 + · · ·+ a(1)nnxn = b(1)n ≡ a

(1)
n,n+1,

where the new coefficients a
(1)
ij = aij − (ai1/a11)a1j, i = 2, . . . , n, j = 2, . . . , n+ 1. If a11 = 0,

then since A is assumed to be nonsingular, we may, by interchanging two rows, get a non-zero
element in the upper left-hand corner.
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Next, if a
(1)
22 6= 0, we subtract a

(1)
i2 /a

(1)
22 times the second equation from the ith equation,

i = 3, . . . , n, and get the second derived system:

a11x1 + a12x2 + · · ·+ a1nxn = b1 ≡ a1,n+1

a
(1)
22 x2 + · · ·+ a

(1)
2nxn = b

(1)
2 ≡ a

(1)
2,n+1

a
(2)
33 x3 + · · ·+ a

(2)
3nxn = b

(2)
3 ≡ a

(2)
3,n+1

· · · · · ·

a
(2)
n3x3 + · · ·+ a(2)nnxn = b(2)n ≡ a

(2)
n,n+1,

where a
(2)
ij = a

(1)
ij − (a

(1)
i2 /a

(1)
22 )a

(1)
2j , Again, if a

(1)
22 = 0, we may interchange two rows to get a

non-zero element in the (2, 2) position.

Continuing this process through n− 1 steps, we arrive at the final system:

a11x1 + a12x2 + · · ·+ a1nxn = b1 ≡ a1,n+1

a
(1)
22 x2 + · · ·+ a

(1)
2nxn = b

(1)
2 ≡ a

(1)
2,n+1

· · · · · ·

a(n−1)
nn xn = b(n−1)

n ≡ a
(n−1)
n,n+1,

with the diagonal elements all non-zero, and

a
(k)
ij = a

(k−1)
ij − (a

(k−1)
ik /a

(k−1)
kk )a

(k−1)
kj ,

k = 1, . . . , n− 1, i = k + 1, . . . , n, j = k + 1, . . . , n+ 1, a
(0)
ij = aij.

From this form, the solution is then easily computed by back substitution, i.e,,

xi =
1

a
(i−1)
ii

[

b
(i−1)
i −

n
∑

j=i+1

a
(i−1)
ij xj

]

, i = n, . . . , 1.

The process leading to the upper triangular system is called Gaussian elimination. One
could also consider a variant of this method, called Gauss-Jordan reduction that reduces
all the non-diagonal elements to zero. However, if one counts the number of arithmetic
operations needed to compute the solution by these two methods, one finds that the number
of multiplications-divisions needed for the solution by Gaussian elimination is n3/3+O(n2),
while the number needed using Gauss-Jordan reduction is n3/2 +O(n2). Hence for n large,
Gauss-Jordan reduction is not as efficient.

We now consider another variant, called Crout reduction, that is designed to reduce the
number of intermediate quantities that must be retained in the process. The basic idea is to
factor A = LU , where L is a lower triangular matrix and U is an upper triangular matrix.
Once this is done, the solution of the system Ax = b is found by solving Lh = b and then
Ux = h, both of which are fast, since this is accomplished using back substitution.

We first show why such a factorization is possible by relating it to the process of Gaussian
elimination. Denote by A1 the the matrix of coefficients in the first derived system obtained



4 MATH 574 LECTURE NOTES

by Gaussian elimination. It is easy to check that A1 = L1A, where

L1 =









1 0 · · · 0
−a21/a11 1 · · · 0

· · · · · · · · ·
−an1/a11 0 · · · 1









.

In general, if we denote the matrix of coefficients in the i+1st derived system by Ai+1, then
Ai+1 = Li+1Ai, i = 0, . . . , n− 2, where

Li+1 =































1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
· · · · · · · · · · · · · · · · · · · · ·
0 0 · · · 1 0 · · · 0
0 0 · · · 0 1 · · · 0

0 0 · · · 0
−a

(i)
i+2,i+1

a
(i)
i+1,i+1

1 · · · 0

· · · · · · · · · · · · · · · · · · · · ·

0 0 · · · 0
−a

(i)
n,i+1

a
(i)
i+1,i+1

0 · · · 1































.

Finally, denoting the upper triangular matrix of coefficients in the final system by U = (uij),
we have

U = Ln−1Ln−2 · · ·L1A = L̃A,

where L̃ is lower triangular with ones on the diagonal. Since the product of two lower
triangular matrices with ones on the diagonal is a matrix of the same form, and the inverse
of L̃ is also of this form, we may write L̃−1 = L and hence A = LU .

Remark 1: We have assumed in the derivation that a
(i)
i+1,i+1 6= 0. If this is not so, then

the method breaks down. However, one can show that if A is non-singular, there exists a
permutation matrix P (i.e., each row and column has exactly one entry equal to one and
the rest zeroes) such that LU = P TA. Thus, to solve Ax = b, we find a solution to the
equivalent system: P TAx = P T b, which amounts to interchanging the rows.

Remark 2: If instead of using the matrices Li+1, we use the identical matrices, but replacing

the 1 in the (i+1, i+1) position by 1/a
(i)
i+1,i+1, then the algorithm proceeds in a similar way.

However, in this case the factorization A = LU will produce an upper triangular matrix U
with ones on the diagonal, while L will be lower triangular, but not unit lower triangular
(i.e., the diagonal elements will not necessarily be equal to one).

In matrix notation, we see that LU = (LD)(D−1U), where D is a diagonal matrix. We
can choose D to make either LD or D−1U have ones on the diagonal. We now present an
algorithm that produces an LU factorization of A with U unit upper triangular. The idea
is simply that if L = (lij) is lower triangular and U = (uij) is unit upper triangular, then
writing A = (aij),

aij =

min(i,j)
∑

k=1

likukj.
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Hence, we have

lirurr = air −

r−1
∑

k=1

likukr, i = r, · · · , n, lrrurj = arj −

r−1
∑

k=1

lrkukj, j = r, · · · , n.

Since urr = 1, we can define the elements lir, urj recursively by:

lir = air −

r−1
∑

k=1

likukr, urj = [arj −
r−1
∑

k=1

lrkukj]/lrr.

Using the convention that
∑0

i=1 ti = 0 and putting in partial pivoting (i.e., interchange of
rows to insure the factorization), we have the following algorithm.

For r = 1, · · · , n (incrementing by one), do steps (i) through (iv).

(i) Compute lir = air −
∑r−1

k=1 likukr, i = r, · · · , n, and overwrite lir on air in the ith row
and rth column of the matrix A.

(ii) Set intr ≥ r equal to the smallest integer k for which |lkr| = maxr≤j≤n |ljr|.

(iii) Interchange the entire rth and intrth rows of the array. From this point on, these
rows will be referred to by their new positions. Note: In practice, one does not physically
interchange the rows, but instead keeps track of an index representing these changes.

(iv) Compute urj = [arj −
∑r−1

k=1 lrkukj]/lrr, j = r + 1, · · · , n and overwrite urj on arj in
the rth row and jth column of the matrix A.

Steps (ii) and (iii) are known as partial pivoting. We search the rth column (rows r
through n) for the largest element in absolute value and use that element as the pivot to
eliminate the other elements in that column (as in the Gaussian elimination method). In
fact, partial pivoting is usually done, even when the LU factorization exists without doing
it. We will consider this issue in more detail later.


