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10. Two-point boundary value problems

We consider the approximation of problems of the form:

u′′ = f(x, u, u′), u(a) = ga, u(b) = gb.

We discuss three types of methods: (i) shooting method, (ii) finite difference method, (iii)
finite element method.

10.1. Shooting method. The main idea is to transform the boundary value problem into
a sequence of initial value problems. To do this, we define for each value of a parameter γ,
a function u(x; γ) that solves the initial value problem

u′′ = f(x, u, u′), u(a) = ga, u′(a) = γ.

The problem is then to find a value of γ such that u(b; γ) = gb, i.e., we seek a root of the
nonlinear equation w(γ) = u(b; γ)− gb = 0. If we solve this equation by the secant method,
for example, then we obtain the iteration:

γn+1 = γn − w(γn)
γn − γn−1

w(γn)− w(γn−1)
.

where γ0 and γ1 are initial approximations. Note that to evaluate w(γn), we need to find
u(b, γn), which involves solving an initial value problem. Using the techniques discussed
previously (last semester), we can do this by reformulating the problem as a first order
system of odes by introducing a new variable v = u′. This gives the system

d

dx

(

u
v

)

=

(

v
f(x, u, v)

)

, u(a) = ga, v(a) = γ.

10.2. Finite difference method. We first consider the case of a linear two-point boundary
value problem of the form

L(u) ≡ −
d

dx

(

p(x)
du

dx

)

+ q(x)u = f(x), u(a) = ga, u(b) = gb,

where we assume that p(x) ≥ p∗ > 0 and q(x) ≥ 0.

The idea now is to replace the derivatives in the equation by difference quotients, with the
aim of producing an approximate problem whose unknowns represent approximations to the
true solution at a finite set of points. These unknowns will then be determined by solving
a finite dimensional linear system of equations. To do this, we place a mesh of width h on
[a, b], i.e., define mesh points xj = a+ jh, j = 0, . . . , N , where h = (b− a)/N .

First, consider the special case when p(x) is constant.

Using Taylor series expansions, we get

u(x± h) = u(x)± hu′(x) +
h2

2
u′′(x)±

h3

6
u′′′(x) +

h4

24
u(4)(ξ±).
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Hence, for some ξ ∈ [x− h, x+ h],

[u(x+ h)− 2u(x) + u(x− h)]/h2 = u′′(x) +
h2

24
[u(4)(ξ+) + u(4)(ξ−)] = u′′(x) +

h2

12
u(4)(ξ).

In the above we have used the Mean Value Theorem for sums, i.e.,

Theorem 27. Let F (x) be a continuous function on [a, b], let x1, · · · , xn be points in [a, b],
and let d1, · · · , dn be real numbers all of one sign. Then

∑n
i=1 F (xi)di = F (ξ)

∑n
i=1 di for

some ξ ∈ [a, b].

If we apply the above formula at the point x = xj and insert it into the differential
equation, we get

0 = −pu′′(xj) + q(xj)u(xj)− f(xj)

= −p[u(xj+1)− 2u(xj) + u(xj−1)]/h
2 + q(xj)u(xj)− f(xj) + p(h2/12)u(4)(ξj).

We then define an approximation uj to u(xj) by omitting the O(h2) error terms, i.e., we let
uj, j = 1, . . . , N − 1 satisfy:

Lhuj ≡ p[−uj+1 + 2uj − uj−1]/h
2 + q(xj)uj = f(xj).

Since the boundary conditions are given, we set u0 = ga and uN = gb. Hence, we have N − 1
linear equations for the N − 1 unknowns u1, . . . , uN−1.

For later use, it is useful to define the local truncation error of the method, given by

τj = Lhu(xj)− Lu(xj).

This is basically how well the true solution satisfies the discrete equations. Using the Taylor
expansions defined above, we see that

τj = Lhu(xj)− Lu(xj) = −p(h2/12)u(4)(ξj).

We next consider the approximate discrete system in more detail. Multiplying our discrete
equation by h2 and collecting terms, we get

−puj+1 + [2p+ h2q(xj)]uj − puj−1 = h2f(xj).

Setting aj = 2p+ h2q(xj), we may write this system of linear equations in matrix form as:












a1 −p 0 0 · · · 0
−p a2 −p 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 −p aN−2 −p
0 · · · 0 0 −p aN−1

























u1

u2

· · ·
uN−2

uN−1













= h2













f(x1)
f(x2)
· · ·

f(xN−2)
f(xN−1)













+













pga
0
· · ·
0
pgb













.

Thus, we need to solve the linear system Au = F , where A is a symmetric tridiagonal
matrix. Note that if min[a,b] q(x) ≥ q∗ > 0, then A is strictly diagonally dominant and hence
invertible.

Now let us return to the case when p depends on x. One possibility is to write

Lu = −pu′′ − p′u′ + qu
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and approximate the first term at x = xj (as above) by

p(xj)[−uj+1 + 2uj − uj−1]/h
2.

To get an approximation to u′ that is also second order, we could use the Taylor series to
write

u(x± h) = u(x)± u′(x) +
h2

2
u′′(x)±

h3

6
u′′′(η±).

It is then easy to show that

[u(x+ h)− u(x− h)]/2h = u′(x) +
h2

6
u′′′(η),

for some η ∈ [x− h, x+ h]. In that case, our discrete equation would become

−[p(xj)− hp′(xj)/2]uj−1 + [2p(xj) + h2q(xj)]uj − [p(xj) + hp′(xj)/2]uj+1 = h2f(xj).

There are two drawbacks to this approach. First, the matrix we get will not be symmetric,
and thus will involve more work to solve. To see this, let

aj = 2p(xj) + h2q(xj), bj = p(xj)− hp′(xj)/2, cj = p(xj) + hp′(xj)/2.

Then, we may write this system of linear equations in matrix form as:












a1 −c1 0 0 · · · 0
−b2 a2 −c2 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 −bN−2 aN−2 −cN−2

0 · · · 0 0 −bN−1 aN−1

























u1

u2

· · ·
uN−2

uN−1













= h2













f(x1)
f(x2)
· · ·

f(xN−2)
f(xN−1)













+













b1ga
0
· · ·
0

cN−1gb













.

When p is not constant, we do not expect that bj+1 = cj. Another drawback to this approach
is that we would also have to compute p′.

Instead, we consider another way to approximate the derivatives in the equation. Using
Taylor series expansions, we get either

v(x± ǫ) = v(x)± ǫv′(x) +
ǫ2

2
v′′(x) +O(ǫ3) or

v(x± ǫ) = v(x)± ǫv′(x) +
ǫ2

2
v′′(x)±

ǫ3

6
v′′′(x) +O(ǫ4),

depending on where we decide to end the expansion. Hence,

[v(x+ ǫ)− v(x− ǫ)]/(2ǫ) = v′(x) +O(ǫ2) or

[v(x+ ǫ)− v(x− ǫ)]/(2ǫ) = v′(x) +
ǫ2

6
v′′′(x) +O(ǫ3).

First, choosing v = pu′, x = xj and ǫ = h/2, we get that

(pu′)′(xj) = [(pu′)(xj + h/2)− (pu′)(xj − h/2)]/h+O(h2).
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Then, choosing v = u, ǫ = h/2, and x = xj + h/2 and x = xj − h/2, we get that

u′(xj + h/2) = [u(xj + h)− u(xj)]/h−
h2

24
u′′′(xj + h/2) +O(h3),

u′(xj − h/2) = [u(xj)− u(xj − h)]/h−
h2

24
u′′′(xj − h/2) +O(h3).

Inserting these quantities, we obtain:

(pu′)′(xj) =
1

h

{

[p(xj + h/2)
u(xj + h)− u(xj)

h
− [p(xj − h/2)

u(xj)− u(xj − h)

h

}

+
h

24
{p(xj + h/2)u′′′(xj + h/2)− p(xj − h/2)u′′′(xj − h/2)}+O(h2).

Although the middle terms seems to only O(h), we get by applying the Mean Value Theorem,
that

p(xj + h/2)u′′′(xj + h/2)− p(xj − h/2)u′′′(xj − h/2) = O(h),

and so

(pu′)′(xj) =
1

h

{

[p(xj + h/2)
u(xj + h)− u(xj)

h
− [p(xj − h/2)

u(xj)− u(xj − h)

h

}

+O(h2).

Denoting p(xj ±h/2) by pj±1/2, and omitting the O(h2) terms, we are led to the approxima-
tion:

(10.1) Lhuj =
1

h2

(

−pj−1/2uj−1 + [pj−1/2 + pj+1/2 + h2q(xj)]uj − pj+1/2uj+1

)

and thus to the difference equation

−pj−1/2uj−1 + [pj−1/2 + pj+1/2 + h2q(xj)]uj − pj+1/2uj+1 = h2f(xj).

We remark that although we have not kept careful track of the error terms, it is possible to
show that the local truncation error τj = Lhu(xj)− Lu(xj) satisfies

|τj| ≤ Kh2[max
[a,b]

|u(4)(x)|+max
[a,b]

|(pu(3))′(x)|],

where K is a constant that does not depend on u or h.

Now setting aj = pj−1/2 + pj+1/2 + h2q(xj), we obtain the linear system












a1 −p3/2 0 0 · · · 0
−p3/2 a2 −p5/2 0 · · · 0
· · · · · · · · · · · · · · · · · ·
0 · · · 0 −p aN−2 −pN−3/2

0 · · · 0 0 −pN−3/2 aN−1

























u1

u2

· · ·
uN−2

uN−1













= h2













f(x1)
f(x2)
· · ·

f(xN−2)
f(xN−1)













+













p1/2 ga
0
· · ·
0

pN−
1

2

gb













Two natural questions that we now address are (i) whether this linear system always
has a unique solution and (ii) how good an approximation does this produce to the true
solution (i.e., does the approximation converge as h → 0, and if so, how fast)? To answer
these questions, we first establish a fundamental property of this discrete system, i.e., that
it satisfies a discrete maximum principle.


