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10.2.1. Discrete maximum principle.

Theorem 28. (Discrete Maximum Principle)
(i) If Lhuj ≤ 0 for all 1 ≤ j ≤ N−1 and max(u0, uN) ≥ 0, then max0≤j≤N uj ≤ max(u0, uN).
(ii) If Lhuj ≥ 0 for all 1 ≤ j ≤ N−1, and min(u0, uN) ≤ 0, then min0≤j≤N uj ≥ min(u0, uN).

Proof. We prove (i) by contradiction. Assume that max0≤j≤N uj = uk = M for some 1 ≤
k ≤ N − 1, where M > max(u0, uN). Since Lhuk ≤ 0, M > 0, and q(xk) ≥ 0, we have

pk−1/2uk−1 + pk+1/2uk+1 ≥ [pk−1/2 + pk+1/2 + h2q(xk)]uk

= [pk−1/2 + pk+1/2 + h2q(xk)]M ≥ [pk−1/2 + pk+1/2]M.

But since uk+1 and uk−1 are ≤ M , and pk−1/2 and pk+1/2 are > 0,

pk−1/2uk−1 + pk+1/2uk+1 ≤ [pk−1/2 + pk+1/2]M,

with strict inequality holding unless uk+1 = uk−1 = M . Hence,

pk−1/2uk−1 + pk+1/2uk+1 = [pk−1/2 + pk+1/2]M,

and so we must have uk+1 = uk−1 = M . We now repeat this argument at all interior
points and eventually conclude that u0 = uN = M , which is a contradiction. Thus, we
have established (i). In fact, we have established a slightly stronger result, i.e., that if
max0≤j≤N uj ≥ 0 and occurs at in interior point, then uj is a constant for all j. To prove (ii),
we let zj = −uj. Then Lhzj = −Lhuj ≤ 0 if Lhuj ≥ 0 and min uj = min(−zj) = −max(zj).
Hence, max(z0, zN) = −min(u0, uN) ≥ 0. By part (i), max0≤j≤N zj ≤ max(z0, zN). Hence
−min0≤j≤N uj ≤ −min(u0, uN), and so min0≤j≤N uj ≥ min(u0, uN). �

Corollary 7. If q(x) ≡ 0, then the discrete maximum principle holds without the hypotheses
max(u0, uN) ≥ 0 for part (i) and min(u0, uN) ≤ 0 for part (ii).

Proof. We see that these hypotheses are only used in one step of the proof to eliminate q(x)
and hence will not be needed if q(x) ≡ 0. �

One important consequence of the discrete maximum principle is that it ensures that
the discrete system of linear equations always has a unique solution. Since the system
Au = F is a system of N − 1 equations in N − 1 unknowns, we know that there will exist a
unique solution, provided the only solution of the homogeneous problem (i.e., with F = 0)
is given by u = 0. But in this case, the linear system is equivalent to the system Lhuj = 0,
j = 1, . . . , N − 1. and u0 = uN = 0. Using both parts of the discrete maximum principle,
we can conclude that for any 0 ≤ k ≤ N ,

0 = min(u0, uN) ≤ min
0≤j≤N

uj ≤ uk ≤ max
0≤j≤N

uj ≤ max(u0, uN) = 0.

Hence uk = 0 for 0 ≤ k ≤ N , and so u = 0.

Another approach to existence and uniqueness of the approximate solution and also to
stability and error estimates is by using discrete energy estimates. We illustrate this idea by
applying it to establish uniqueness of the approximate solution. Our discrete energy estimate
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is established using the following summation by parts formula, analogous to integration to
parts.

Lemma 4.
N−1
∑

j=1

(wj+1 − wj)vj = wNvN − w1v0 −
N−1
∑

j=0

(vj+1 − vj)wj+1.

Proof. We start from the following identity.

wj+1vj+1 − wjvj = (wj+1 − wj)vj + (vj+1 − vj)wj+1.

Summing this result from j = 1 to N − 1, we get

wNvN − w1v1 =
N−1
∑

j=1

[wj+1vj+1 − wjvj] =
N−1
∑

j=1

[(wj+1 − wj)vj + (vj+1 − vj)wj+1].

Rearranging terms, we get

N−1
∑

j=1

(wj+1 − wj)vj = wNvN − w1v1 −

N−1
∑

j=1

(vj+1 − vj)wj+1 = wNvN − w1v0 − w1(v1 − v0)

−

N−1
∑

j=1

(vj+1 − vj)wj+1 = wNvN − w1v0 −

N−1
∑

j=0

(vj+1 − vj)wj+1.

�

Using this lemma, we can establish the following result.

Theorem 29. Let Lh be defined by (10.1). Then

N−1
∑

j=1

ujLhuj = −h−2[pN−1/2(uN − uN−1)uN − p1/2(u1 − u0)u0]

+ h−2

N−1
∑

j=0

pj+1/2(uj+1 − uj)
2 +

N−1
∑

j=1

q(xj)u
2
j .

Proof. Let wj = pj−1/2(uj − uj−1) and vj = uj. Then

ujLhuj = −h−2(wj+1 − wj)vj + q(xj)u
2
j .

Applying the summation by parts lemma,

N−1
∑

j=1

ujLhuj = −h−2[wNvN − w1v0] + h−2

N−1
∑

j=0

(vj+1 − vj)wj+1 +
N−1
∑

j=1

q(xj)u
2
j

= −h−2[pN−1/2(uN −uN−1)uN −p1/2(u1−u0)u0]+h−2

N−1
∑

j=0

pj+1/2(uj+1−uj)
2+

N−1
∑

j=1

q(xj)u
2
j .

�
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We note that uniqueness follows directly from this theorem, since if f(xj) = 0, j =
0, . . . , N − 1, and u0 = uN = 0, then

h−2

N−1
∑

j=0

pj+1/2(uj+1 − uj)
2 +

N−1
∑

j=1

q(xj)u
2
j = 0.

Since q(x) ≥ 0 and p(x) ≥ p∗ > 0, we conclude that (uj+1 − uj)
2 = 0, j = 0, . . . , N − 1.

Hence uj is a constant, and since u0 = 0, all the uj are zero.

10.2.2. Stability and error estimates. A second important consequence of the discrete maxi-
mum principle is that we can use it to prove a stability result for our approximation scheme,
which can then be used to derive error estimates.

To simplify the presentation, consider the special case when p(x) = 1 and q(x) = 0, so we
are considering the differential equation −u′′(x) = f(x). We can then establish the following
stability result for our approximation scheme.

Theorem 30. Let v be a function defined on the mesh points xj, j = 0, . . . , N . Then

max
0≤j≤N

|vj| ≤ max(|v0|, |vN |) +
(b− a)2

2
max

1≤j≤N−1
|Lhvj|.

Proof. Let wj = (xj − a)2/2, j = 0, 1, . . . , N . Then, 0 ≤ wj ≤ (b− a)2/2. Furthermore,

Lhwj =
1

2h2
[−(xj − h− a)2 + 2(xj − a)2 − (xj + h− a)2] = −1.

Next, define mesh functions φ+
j and φ−

j by φ±
j = ±vj +Mwj, where M = max1≤j≤N−1 |Lhv|.

Then for 1 ≤ j ≤ N − 1,

Lhφ
±
j = ±Lhvj +MLhwj = ±Lhvj −M ≤ 0.

Hence, by the discrete maximum principle, for 1 ≤ j ≤ N ,

φ±
j ≤ max(φ±

0 , φ
±
N) = max(±v0 +Mw0,±vN +MwN)

≤ max(±v0,±vN) +M max(w0, wN) = max(±v0,±vN) +M(b− a)2/2.

Since Mwj ≥ 0,
±vj = φ±

j −Mwj ≤ φ±
j .

Hence,
±vj ≤ max(±v0,±vN) +M(b− a)2/2,

and so

max
0≤j≤N

|vj| ≤ max(|v0|, |vN |) +
(b− a)2

2
max

1≤j≤N−1
|Lhvj|.

�

Using this stability result together with the estimate for the local truncation error of the
method, we easily derive an error estimate for our finite difference scheme. First, we establish
the following result.
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Theorem 31. Suppose u is the exact solution of the boundary value problem and uj the
approximation to u at xj given by the finite difference scheme. Then

max
0≤j≤N

|u(xj)− uj| ≤ (b− a)2/2 max
1≤j≤N−1

|Lhu(xj)− Lu(xj)|.

Proof. Set vj = u(xj)− uj. Then v0 = vN = 0 and

Lhvj = Lhu(xj)− Lhuj = Lhu(xj)− Lu(xj) + Lu(xj)− Lhuj

= Lhu(xj)− Lu(xj) + f(xj)− f(xj) = Lhu(xj)− Lu(xj).

Hence,

max
1≤j≤N−1

|Lhvj| = max
1≤j≤N−1

|Lhu(xj)− Lu(xj)|,

and the result follows directly from our previous theorem. �

Noting that the quantity |Lhu(xj)−Lu(xj)| is just the local truncation error of the method,
we immediately get the following corollary.

Corollary 8. If u ∈ C4[a, b], then

max
j

|u(xj)− uj| ≤
(b− a)2

24
h2 max

[a,b]
|u(4)(x)|.

Remark: The quantity Lu− Lhu is called the consistency error in the approximation of
Lu by Lhu. The statement that max |Lu − Lhu| → 0 as h → 0 says the approximation is
consistent.

Since our approximate problem has a unique solution, there will be a constant Ch depend-
ing on h such for any any mesh function v,

max
0≤j≤N

|vj| ≤ Ch

[

max(|v0|, |vN |) + max
1≤j≤N−1

|Lhvj|

]

.

If there exists a constant C (the stability constant) such that Ch ≤ C for all 0 < h ≤ h0,
(i.e., the estimate holds with a constant C independent of h), then we say the approximation
scheme is stable.

Our theorem showed the the error max |u(xi)− ui| was bounded by the stability constant
times the maximum of the consistency error. So we have the result that stability + con-
sistency implies convergence, i.e., limh→0 max |u(xi) − ui| = 0. In this case, we imposed
the boundary conditions exactly, so there was no consistency error due to approximation of
the boundary conditions. However, in other problems, such as those described in the next
section, this will not be the case.
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10.2.3. Other boundary conditions. So far, we have only considered boundary conditions of
the form u(a) = ga (Dirichlet boundary conditions). Another important type of boundary
condition is p(a)u′(a) = ga (Neumann boundary condition). For such a boundary condition,
u0 becomes an unknown, and we need to impose an additional equation. The simplest
approach is to use a finite difference approximation to u′(a) using only boundary and interior
points. Using the Taylor series expansion, we have

u(a+ h) = u(a) + hu′(a) + h2u′′(ξa)/2.

Hence,
u′(a) = [u(a+ h)− u(a)]/h− hu′′(ξa)/2.

Discarding the last term, we could then approximate the boundary condition p(a)u′(a) = ga
by the equation p(a)[u1 − u0]/h = ga. In order to preserve the symmetry of the matrix, we
could use instead the approximate boundary condition p1/2[u1 − u0]/h = ga. An analogous
approximation can be used if we replace the boundary condition u(b) = gb by the boundary
condition p(b)u′(b) = gb. In this approach, we use only an O(h) approximation to the deriva-
tive and have approximated p(a) by p(a+h/2), again a first order approximation. One must
then check the overall effect on the error because of use of these low order approximations
to the boundary conditions.

Another approach, which gives an O(h2) approximation to the boundary conditions, is to
introduce a fictitious value u−1 at x = a− h and assume the differential equation also holds
at the point x = a. Thus, the unknowns are now u−1, u0, . . . , uN−1 (assuming we keep the
boundary condition u(b) = gb). The discrete equations at x = a+ h and x = a are:

−p1/2u0+[p1/2+p3/2]u1−p3/2u2 = h2f(x1), −p−1/2u−1+[p−1/2+p1/2]u0−p1/2u1 = h2f(x0).

We then approximate the boundary condition to produce an equation that can be used to
eliminate u−1. We note from our previous Taylor expansions that

[v(x+ ǫ) + v(x− ǫ)]/2 = v(x) +O(ǫ2).

Choosing v = pu′(x), x = a, and ǫ = h/2, we see that

ga = p(a)u′(a) = [p(a+ h/2)u′(a+ h/2) + p(a− h/2)u′(a− h/2)]/2 +O(h2)

= p(a+ h/2)
u(a+ h)− u(a)

2h
+ p(a− h/2)

u(a)− u(a− h)

2h
+O(h2).

Hence, we take as the additional equation:

p1/2u1 − p−1/2u−1 + [p−1/2 − p1/2]u0 = ga.

A similar procedure can be employed at the point x = b.

10.2.4. Nonlinear problems. If we return to the more general problem,

u′′ = f(x, u, u′), u(a) = ga, u(b) = gb,

we can employ many of the same ideas to produce a discrete system. However, in this case,
we will end up with a nonlinear systems of equations, so we will need to use the methods of
the previous section, and the problem becomes much more complicated.


