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10.3. Finite element method. We begin by considering the model problem:

Lu ≡ −
d

dx

(

p(x)
du

dx

)

+ q(x)u = f(x), a < x < b, u(a) = ga, u(b) = gb.

where we assume that p(x) ≥ p∗ > 0, q(x) ≥ 0.

Unlike the finite difference method, the finite element method is not based on the differen-
tial equation, but on a variational formulation of the boundary value problem. To describe
this, we first consider a simple formula derived by integration by parts. Let

(u, v) =

∫ b

a

u(x)v(x) dx.

Then,

(Lu, v) =

∫ b

a

[

−
d

dx

(

p(x)
du

dx

)

+ q(x)u

]

v dx = −pu′v|ba +

∫ b

a

(p(x)u′v′ + quv] dx.

To make use of this formula, we note that if u is a solution of the boundary value problem
and is sufficiently smooth, then Lu = f . However, we have no information about u′(a)
or u′(b), both of which appear on the right hand side of the integration by parts formula.
However for all v (sufficiently smooth) satisfying v(a) = v(b) = 0, we have

(f, v) = (Lu, v) =

∫ b

a

(p(x)u′v′ + quv) dx ≡ a(u, v).

Hence, the solution, u, of the boundary value problem satisfies the variational equation

a(u, v) = (f, v)

for all (sufficiently smooth) functions v satisfying v(a) = v(b) = 0.

We can also reverse this process. If u satisfies a(u, v) = (f, v) for all (sufficiently smooth)
functions v satisfying v(a) = v(b) = 0, then integrating by parts, we see that (Lu, v) = (f, v).
From this, we can conclude that if u ∈ C2(a, b), p ∈ C1(a, b), q ∈ C0(a, b), and f ∈ C0(a, b),
then Lu = f for a < x < b. To see this, note that then w(x) = Lu(x) − f(x) ∈ C0(a, b).

However, if
∫ b

a
w(x)v(x) dx = 0 for all v ∈ C0(a, b) with v(a) = v(b) = 0, then w(x) = 0. To

see this, assume that there is a point x0 such that w(x0) 6= 0 (say w(x0) > 0). Then there is
a number ǫ such that w(x) > 0 for all x0 − ǫ < x < x0 + ǫ. Now choose v(x) satisfying

v(x) =



















0, x ≤ x0 − ǫ

[x− x0 + ǫ]/ǫ, x0 − ǫ ≤ x ≤ x0

[x0 + ǫ− x]/ǫ, x0 ≤ x ≤ x0 + ǫ

0, x0 + ǫ ≤ x

.

Then, since both w(x) and v(x) are ≥ 0 on the interval [x0 − ǫ, x0 + ǫ] and strictly positive
on the interval [x0 − ǫ/2, x0 + ǫ/2], we have

∫ b

a

w(x)v(x) dx =

∫ x0+ǫ

x0−ǫ

w(x)v(x) dx ≥

∫ x0+ǫ/2

x0−ǫ/2

w(x)v(x) dx > 0,
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which contradicts our assumption that this integral equals zero. Hence, we conclude that
w(x) = (Lu − f)(x) = 0. To get a solution of the boundary value problem, we must also
require that u satisfies the boundary conditions u(a) = ga, u(b) = gb.

To make all this more precise, we need to specify what types of functions we allow as
solutions. For the differential equation, we assume that that data p, q, f satisfy p ∈ C1(a, b),
q ∈ C0(a, b), and f ∈ C0(a, b). We then usually require that u ∈ C2(a, b), where by Cr(a, b)
we mean a function that has continuous derivatives up to order r on the interval (a, b).
When r = 0, we mean the function is continuous. Under these assumptions, all terms in
the differential equation are defined at every point, and to be a solution we require that u
satisfies the differential equation at every point.

In the variational equation, the highest derivative that appears on either u or v is the
first derivative, so we can make sense of this equation even for functions that only have first
derivatives. In addition, since these functions only appear inside an integral sign, we can
make sense of the variational equation even if u′ and v′ are not continuous. In particular,
we can allow jumps in these derivatives. The right condition is that u and v must belong to
the space

V ≡ H1[a, b] = {v :

∫ b

a

[v2 + (v′)2] dx < ∞}.

A simple example of a function in this space that does not have a continuous derivative is
given by

v(x) = (x− a)/(c− a), a < x ≤ c, v(x) = (b− x)/(b− c), c < x < b.

Note that this function is continuous, but

v′(x) = 1/(c− a), a < x < c, v′(x) = −1/(b− c), c < x < b.

Since v′(x) has different limits from the right and left as x → c, it is not defined at x = c.

We also want to define subspaces of V that include boundary conditions. The two spaces
we need are

V 0 = {v ∈ V : v(a) = 0, v(b) = 0}, V g = {v ∈ V : v(a) = ga, v(b) = gb}.

Using these spaces, we can then define a variational problem corresponding to the boundary
value problem we started with, i.e.,

Problem P : Find u ∈ V g such that a(u, v) = (f, v) for all v ∈ V 0.

The finite element method is based on this variational formulation of the boundary value
problem. The basic idea is to choose a finite dimensional subspace Vh of V and subspaces
V 0
h and V g

h of Vh satisfying the boundary conditions indicated by the superscript and define
an approximate variational problem as follows:

Problem Ph: Find uh ∈ V g
h such that a(uh, v) = (f, v) for all v ∈ V 0

h .

The spaces Vh used in the finite element method are made up of piecewise polynomials,
which we describe in the following way.
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10.3.1. Piecewise Polynomial Approximation. Consider a partition P of an interval [a, b] by
points x0, . . . , xn, i.e., a = x0 < x1 < . . . < xn = b.

Definition: We say Q(x) is a Cr piecewise polynomial of degree ≤ k with respect to the
partition P if Q ∈ Cr[a, b] and Q has the form Q(x) = qj(x) for x ∈ (xj−1, xj), j = 1, . . . n,
where qj(x) is a polynomial of degree ≤ k for each value of j.

Note that since Q(x) ∈ Cr and the qj are polynomials, its first r derivatives are continuous
and its r + 1st derivative is defined everywhere except possibly at the points xj. For use in
the application we are considering, we will use C0 (i.e., continuous) piecewise polynomials.

Examples:

The simplest example is when k = 1, the space of continuous piecewise linear functions.
On any subinterval, a linear function is uniquely determined by knowing its value at two
distinct points (these values are called the degrees of freedom of the function). For example,
we may write any linear function L(x) in the form:

L(x) =
x− b

a− b
L(a) +

x− a

b− a
L(b),

and so L(x) is uniquely determined by specifying the values L(a) and L(b).

If we consider the space of discontinuous piecewise linear functions, we would have two
degrees of freedom on each subinterval, and since there are n subintervals, there would be
2n degrees of freedom. However, since Q is continuous, we must have qj(xj) = qj+1(xj),
j = 1, . . . , n − 1. Hence, there are only n + 1 degrees of freedom. Note that by choosing
the degrees of freedom to be the values of the function at the mesh points, we insure the
continuity of Q, i.e., we have qj(xj) = qj+1(xj). The dimension of this space = n + 1, the
number of degrees of freedom. Thus, we see that continuous, piecewise linear functions are
uniquely determined by their values at the n+ 1 mesh points x0, . . . , xn.

k = 2: We want to determine the dimension and the degrees of freedom for the space
of continuous, piecewise quadratics. The space of discontinuous piecewise quadratics would
have 3 degrees of freedom per subinterval, and since there are n subintervals, the overall
dimension is 3n. However, as in the case of linears, the requirement of continuity imposes one
constraint at each interior mesh point, so the dimension of continuous, piecewise quadratics
is 3n− (n− 1) = 2n+ 1. To ensure continuity, we choose n+ 1 of these degrees of freedom
to be the values of the function Q at the mesh points. To uniquely determine Q on each
subinterval, we need to specify one additional degree of freedom per subinterval. A simple
way to do this is to specify Q(xj−1/2), j = 1, . . . , n.

k = 3: In a similar way, we can construct the space of continuous, piecewise, cubic
polynomials, whose dimension will be 3n+1 = 4n− (n− 1). The degrees of freedom are the
values of Q at the mesh points plus its values at any two interior points on each subinterval.

In order to use these spaces in the finite element method, we need to construct a basis for
them. In the case of continuous, piecewise linear functions, we want to find functions φi(x),
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i = 0, 1, . . . , n, such that any piecewise linear function Q1(x) can be written as Q1(x) =
∑n

i=0
αiφi(x), where the αi are constants.

As we shall see when we consider the discrete set of equations produced by the finite
element method, we want to choose a basis that is both easy to construct and also has the
property that any basis function is only non-zero on a small set of consecutive subintervals.
This can be achieved for continuous, piecewise linear functions by the choice {φi}

n
i=0, where

φi(x) = 0, x /∈ [xi−1, xi+1],

= (x− xi−1)/(xi − xi−1), x ∈ [xi−1, xi],

= (xi+1 − x)/(xi+1 − xi), x ∈ [xi, xi+1].

The basis function φi(x) is called a hat function. Note that φi(xj) = 0 for i 6= j and = 1 for
i = j. Hence,

Q1(xj) =
n

∑

i=0

αiφi(xj) = αj.

Thus, Q1(x) =
∑n

i=0
Q1(xi)φi(x), so that Q1(x) is uniquely determined by its degrees of

freedom Q1(xi), i.e., its values at the mesh points.

When the points xj are equally spaced, we get a simplification. Let

φ(x) = 0, x ≥ 1, and x ≤ −1,

= 1− x, 0 ≤ x ≤ 1,

= 1 + x, −1 ≤ x ≤ 0.

Then φi(x) = φ([x− xi]/h), where h = xi+1 − xi.


