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10.3.2. Discretized equations. Before considering finite element spaces using higher order
piecewise polynomials, let us look at how one uses piecewise linear functions to get an
approximation to the solution to the boundary value problem. Returning to Problem Ph, we
need a general expression for the approximate solution uh ∈ V g

h . But such a function can be
written in the form

uh(x) =
n

∑

j=0

αjφj(x) =
n−1
∑

i=j

αjφj(x) + α0φ0(x) + αnφn(x) =
n−1
∑

j=1

αjφj(x) + gaφ0(x) + gbφn(x),

where we have used the facts that αj = uh(xj) and uh(a) = ga, uh(b) = gb. Thus, to
determine uh, we need to determine the constants α1, . . . , αn−1, which are the values of the
approximate solution at the interior mesh points. We also need a general expression for a
function v ∈ V 0

h . By the same reasoning, this can be written as

v(x) =
n−1
∑

i=1

βiφi(x).

Next we observe that the variational equation in Problem Ph being true for all v ∈ V 0
h is

equivalent to it being true for the choices v = φi, i = 1, . . . , n − 1. Since each of these
functions ∈ V 0

h , if the equation hold for all v ∈ V 0
h , it certainly holds for these particular

choices. On the other hand, if

a(uh, φi) = (f, φi), i = 1, . . . , n− 1,

then since any v ∈ V 0
h can be written as

∑n−1
i=1 βiφi(x), for some constants βi, we have

a(uh, v) =
n−1
∑

i=1

βia(uh, φi) =
n−1
∑

i=1

βi(f, φi) = (f, v).

In the above, we have used the fact that for all u, v, w ∈ V and all constants α and β,

a(u, αv + βw) = αa(u, v) + βa(u, w).

Thus, we may recast our problem in the form: Find α1, · · · , αn−1 such that

n−1
∑

j=1

a(φj, φi)αj = (f, φi)− gaa(φ0, φi)− gba(φn, φi), i = 1, . . . , n− 1.

If we define a vector α = (α1, . . . , αn−1)
T , an n−1×n−1 matrix A with entries Aij = a(φj, φi)

and a vector F with entries Fi = (f, φi) − gaa(φ0, φi) − gba(φn, φi), then Problem Ph is
equivalent to solving the linear system Aα = F .

To see how this system compares to the type of linear system produced by the finite differ-
ence method, we compute the entries of the matrix A. The key observation in this compu-
tation is that φi(x) 6= 0 only on the subintervals [xi−1, xi] and [xi, xi+1]. Hence a(φj, φi) = 0,
unless j = i − 1, j = i, or j = i + 1, since otherwise either φi or φj will be zero at each x.
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Thus, the matrix A will be tridiagonal, just as it is in the case of finite differences. Now

a(φi−1, φi) =

∫ xi

xi−1

[pφ′

i−1φ
′

i + qφi−1φi] dx =

∫ xi

xi−1

[p(−1/h2) + qφi−1φi] dx,

a(φi, φi) =

∫ xi+1

xi−1

[pφ′

iφ
′

i + qφiφi] dx =

∫ xi+1

xi−1

[p(1/h2) + qφiφi] dx,

a(φi+1, φi) =

∫ xi+1

xi

[pφ′

i+1φ
′

i + qφi+1φi] dx =

∫ xi+1

xi

[p(−1/h2) + qφi+1φi] dx.

Note that the limits of integration have been simplified by using the facts that φi−1 = 0 for
x ≥ xi, φi+1 = 0 for x ≤ xi, and φi = 0 for x ≤ xi−1 and x ≥ xi+1. When p and q are
constants, we find that

a(φi−1, φi) = −p/h+ qh/6, a(φi, φi) = 2p/h+ 4qh/6, a(φi+1, φi) = −p/h+ qh/6.

To evaluate these integrals for general p and q, we need to use numerical integration
formulas. Two formulas that are exact for linear polynomials are:

∫ b

a

f(x) dx = (b− a)f([a+ b]/2) +
(b− a)3

24
f ′′(η), midpoint rule,

∫ b

a

f(x) dx = (b− a)[f(a) + f(b)]/2− (b− a)3

12
f ′′(η), trapezoidal rule.

If we use the midpoint rule to evaluate integrals involving p and the trapezoidal rule for the
q and f integrals, we get that

a(φi−1, φi) = −p(xi − h/2)/h, a(φi, φi) = [p(xi − h/2) + p(xi + h/2)]/h+ q(xi)h,

a(φi+1, φi) = −p(xi + h/2)/h, (f, φi) = hf(xi).

Hence, we get exactly the same equations as in the finite difference scheme.

10.3.3. Existence and uniqueness of the finite element solution. As in the case of finite dif-
ferences, discretizing by finite elements leads to a square linear system of equations. Thus,
to show existence, we need to show there can be at most one solution. However, if there are
two solutions u1

h and u2
h, then u1

h − u2
h ∈ V 0

h , and subtracting equations, we find that

a(u1
h − u2

h, v) = 0, for all v ∈ V 0
h .

Choosing v = u1
h − u2

h, and using the facts that p(x) ≥ p∗ > 0 and q(x) ≥ 0, we have that

0 = a(v, v) =

∫ b

a

[p(v′)2 + qv2] dx ≥ p∗

∫ b

a

(v′)2 dx.

Hence
∫ b

a
(v′)2 dx = 0 and so v′ = 0. Hence, v is a constant. But v ∈ V 0

h , so v(a) = 0. Hence,
v ≡ 0. We note that this result will be true for any choice of finite element spaces, since we
did not use anything that was particular to piecewise linear functions.
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10.3.4. Error estimates. For the finite difference method, we derived an estimate for the
maximum error at the mesh points. For finite elements, it is more natural to derive an error
estimate in the “energy” norm defined by

‖v‖E = [a(v, v)]1/2.

However, one can also obtain estimates for ‖u − uh‖L2(a,b) and for max[a,b] |u(x) − uh(x)|
and the rate of convergence of the method will depend on the norm in which the error is
measured. For example, it is not hard to check that if f(x) = (1/

√
m) sin(mx), then

‖f‖L2(0,π) =
√

π/(2m), ‖f ′‖L2(0,π) =
√

mπ/2.

Hence, as m increases, the L2 norm of f decreases, while the L2 norm of f ′ (and hence ‖f‖E)
increases.

It is useful to note that the bilinear form a(u, v) is an inner product on the space V , i.e.,
it satisfies the following properties for all u, v, w ∈ V and all scalars c: (i) a(u, v) = a(v, u),
(ii) a(u, v + w) = a(u, v) + a(u, w), (iii) a(cu, v) = ca(u, v), (iv) a(u, u) ≥ 0, and a(u, u) = 0
if and only if u = 0. Thus, we are led to the energy norm on V in a natural way. Whenever
we have an inner product, we have the Cauchy-Schwarz inequality relating the inner product
to the norm, i.e.,

Lemma 5.

|a(u, v)| ≤ ‖u‖E‖v‖E, for all v ∈ V.

Proof. If u or v is zero, then the lemma is obvious. Assume both are not zero. Since

a(‖v‖Eu± ‖u‖Ev, ‖v‖Eu± ‖u‖Ev) ≥ 0,

we have by (ii) and (iii) that

‖v‖2Ea(u, u)± ‖u‖E‖v‖Ea(u, v)± ‖u‖E‖v‖Ea(v, u) + ‖u‖2Ea(v, v) ≥ 0.

Now using (i),
2‖v‖2E‖u‖2E ≥ ±2‖u‖E‖v‖Ea(u, v)

The result follows by dividing by 2‖u‖E‖v‖E. �

Example:

If we apply the Cauchy-Schwarz inequality to the L2 inner product, (u, v) =
∫ b

a
u(x)v(x) dx,

we get
∣

∣

∣

∣

∫ b

a

u(x)v(x) dx

∣

∣

∣

∣

≤
(
∫ b

a

[u(x)]2 dx

)1/2 (∫ b

a

[v(x)]2 dx

)1/2

.

We shall use this result frequently in our analysis.

To obtain an error estimate, the first step is to relate the error between u and uh to the
error in the best approximation of u by functions in V g

h .

Lemma 6.

‖u− uh‖E ≤ ‖u− wh‖E, for all wh ∈ V g
h .
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The lemma says that uh, the approximation produced by the finite element method, is the
best approximation to u among elements of V g

h , if we measure the error in the energy norm.

Proof. The true and approximate solutions u and uh satisfy the respective equations

a(u, v) = (f, v), for all v ∈ V 0,

a(uh, vh) = (f, vh), for all vh ∈ V 0
h .

Since V 0
h ⊆ V 0, we choose v = vh and subtract equations to get

a(u− uh, vh) = 0, for all vh ∈ V 0
h .

Then

a(u− uh, u− uh) = a(u− uh, u− wh) + a(u− uh, wh − uh) = a(u− uh, u− wh),

since wh−uh ∈ V 0
h (i.e., both functions are in V g

h and hence their difference is in V 0
h ). Hence,

‖u− uh‖2E = a(u− uh, u− uh) = a(u− uh, u− wh) ≤ ‖u− uh‖E‖u− wh‖E.
The lemma follows by dividing by ‖u− uh‖E. �

This lemma reduces the question of error estimates for the finite element method to a
question in approximation theory, i.e., how well can the exact solution u be approximated
by functions in V g

h . Clearly, unless the space is chosen so that it has good approximation
properties, the finite element method will not be able to produce a good approximation.


