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10.3.5. Error estimates for piecewise polynomial interpolation. In Math 573, we showed that
if uI is the piecewise linear interpolant of u, i.e., the piecewise linear function satisfying
uh(xi) = u(xi), i = 0, 1, . . . , N , then if u ∈ C2[a, b], then

max
[a,b]

|u(x)− uI(x)| ≤
h2

8
max
[a,b]

|u′′(x)|.

Hence, we know that this space can approximate smooth functions well, and by taking the
mesh spacing sufficiently small, we can approximate to any desired accuracy. To get an
estimate for our method, however, we need error estimates of this type in a different norm.

We now use a different approach to get error estimates in L2 type norms. For this purpose,
it will be convenient to define the space

H2[a, b] = {v :

∫ b

a

[v2 + (v′)2 + (v′′)2] dx < ∞},

i.e., the space of functions whose derivatives up to order 2 are square-integrable. We then
have the following approximation result,

Theorem 32. If u ∈ H2[a, b] and uI denotes the piecewise linear interpolant of u on a
partition of uniform mesh spacing h, then

‖u− uI‖L2(a,b) ≤
h2

√
90

‖u′′‖L2(a,b), ‖u′ − u′

I‖L2(a,b) ≤
h√
6
‖u′′‖L2(a,b).

Proof. To get a result of this type, we use the integral form of the remainder for the Taylor
series expansion, i.e., if Pn(x) =

∑n
k=0 f

(k)(c)(x− c)k/k!, then

f(x)− Pn(x) =
1

n!

∫ x

c

(x− t)nf (n+1)(t) dt.

We first consider a simple interpolation problem on the interval [0, 1]. Let vI(s) denote
the linear function that interpolates v(s) at the points s = 0 and s = 1, i.e., vI(s) =
(1− s)v(0) + sv(1). Then, letting n = 1, c = s and first x = 0 and then x = 1, we get

v(0) = v(s) + v′(s)(0− s) +

∫ 0

s

(0− t)v′′(t) dt,

v(1) = v(s) + v′(s)(1− s) +

∫ 1

s

(1− t)v′′(t) dt.

Hence,

v(s)− vI(s) = v(s)− (1− s)v(0)− sv(1)

= −(1− s)

∫ 0

s

(0− t)v′′(t) dt− s

∫ 1

s

(1− t)v′′(t) dt

= −
∫ s

0

(1− s)tv′′(t) dt−
∫ 1

s

s(1− t)v′′(t) dt =

∫ 1

0

g(s, t)v′′(t) dt,

where
g(s, t) = −(1− s)t, 0 < t < s, g(s, t) = −s(1− t), s < t < 1.
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Applying the Cauchy-Schwarz inequality, we get

∫ 1

0

[v(s)− vI(s)]
2 ds =

∫ 1

0

(
∫ 1

0

g(s, t)v′′(t) dt

)2

ds

≤
∫ 1

0

(
∫ 1

0

[g(s, t)]2 dt

∫ 1

0

[v′′(t)]2 dt

)

ds.

Now
∫ 1

0

[g(s, t)]2 dt =

∫ s

0

(1−s)2t2dt+

∫ 1

s

(s)2(1−t)2dt = (1−s)2s3/3+(s)2(1−s)3/3 = s2(1−s)2/3.

Combining these results,we get
∫ 1

0

[v(s)− vI(s)]
2 ds ≤

∫ 1

0

[v′′(t)]2 dt

∫ 1

0

[s2(1− s)2/3] ds ≤ 1

90

∫ 1

0

[v′′(s)]2 ds.

The result we want will follow from this basic result by a scaling argument using a change
of variable. More specifically, to get an error estimate on the subinterval [xi−1, xi], we make
the change of variable x = xi−1 + hs. Setting u(x) = v(s), and noting that ds = h−1dx and
(dv2/ds2)(s) = h2(d2u/dx2)(x), we get

∫ xi

xi−1

[u(x)− uI(x)]
2 dx = h

∫ 1

0

[v(s)− vI(s)]
2 ds ≤ h

90

∫ 1

0

[v′′(s)]2 ds

=
h

90

∫ xi

xi−1

h4[u′′(x)]2h−1 dx =
h4

90

∫ xi

xi−1

[u′′(x)]2 dx.

Then

‖u− uI‖2L2 =
n

∑

i=1

∫ xi

xi−1

[u(x)− uI(x)]
2 dx ≤

n
∑

i=1

h4

90

∫ xi

xi−1

[u′′(x)]2 dx =
h4

90
‖u′′‖2L2 .

The result follows by taking square roots.

To get the estimate for the derivative, we differentiate the equation v(s) − vI(s) =
∫ 1

0
g(s, t)v′′(t) dt to obtain

v′(s)− v′I(s) =

∫ 1

0

∂g

∂s
(s, t)v′′(t) dt.

Then, proceeding as before, we get

∫ 1

0

[v′(s)− v′I(s)]
2 ds =

∫ 1

0

(
∫ 1

0

∂g

∂s
(s, t)v′′(t) dt

)2

ds

≤
∫ 1

0

(
∫ 1

0

[
∂g

∂s
(s, t)]2 dt

∫ 1

0

[v′′(t)]2 dt

)

ds.

Now
∫ 1

0

[
∂g

∂s
(s, t)]2 dt =

∫ s

0

t2 dt+

∫ 1

s

(1− t)2 dt = s3/3 + (1− s)3/3.
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Combining these results, we get
∫ 1

0

[v′(s)− v′I(s)]
2 ds ≤

∫ 1

0

[v′′(t)]2 dt

∫ 1

0

[s3 + (1− s)3]/3 ds ≤ 1

6

∫ 1

0

[v′′(s)]2 ds.

Changing variables as before, we obtain

∫ xi

xi−1

[u′(x)− u′

I(x)]
2 dx = h−2h

∫ 1

0

[v′(s)− v′I(s)]
2 ds ≤ 1

6h

∫ 1

0

[v′′(s)]2 ds

=
1

6h

∫ xi

xi−1

h4[u′′(x)]2h−1 dx =
h2

6

∫ xi

xi−1

[u′′(x)]2 dx.

Then

‖u′ − u′

I‖2L2 =
n

∑

i=1

∫ xi

xi−1

[u′(x)− u′

I(x)]
2 dx ≤

n
∑

i=1

h2

6

∫ xi

xi−1

[u′′(x)]2 dx =
h2

6
‖u′′‖2L2 .

The result follows by taking square roots. �

10.3.6. Error estimates for the finite element method. We can now easily obtain error esti-
mates for the finite element solution by combining this approximation result with Lemma 6.

Theorem 33. If u ∈ H2[a, b] is the exact solution of the boundary value problem (Problem
P ) and uh is the solution of the approximate problem Ph with Vh chosen to be the space of
continuous piecewise linear functions, then

‖u− uh‖E ≤ Ch‖u′′‖L2(a,b).

Proof. Choosing wh = uI in Lemma 6, we get ‖u−uh‖E ≤ ‖u−uI‖E. Let p∗ = max[a,b] |p(x)|
and q∗ = max[a,b] |q(x)|. Then

‖v‖2E =

∫ b

a

[p(v′)2 + qv2] dx ≤ p∗‖v′‖2L2(a,b) + q∗‖v‖2L2(a,b).

Hence, using Theorem 32, we have for all 0 < h ≤ h0

‖u− uI‖2E ≤
[

p∗
h2

6
+ q∗

h4

90

]

‖u′′‖2L2(a,b) ≤ C2h2‖u′′‖2L2(a,b),

where C depends on p∗, q∗, and h0, but is independent of u and h. �

Since ‖u − uI‖L2 ≤ Ch2‖u′′‖L2 , one could ask whether the finite element solution also
satisfies an estimate of this type.

Lemma 7. ‖u− uh‖L2 ≤ Ch‖u− uh‖E.

Proof. We define w ∈ V 0 as the solution of

a(w, z) = (u− uh, z), for all z ∈ V 0.
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One can show that w satisfies ‖w′′‖L2 ≤ C‖u− uh‖L2 . Then, since a(u− uh, vh) = 0 for all
vh ∈ V 0

h , we choose z = u− uh and vh = wI to obtain

‖u− uh‖2L2 = a(w, u− uh) = a(w − wI , u− uh) ≤ ‖w − wI‖E‖u− uh‖E
≤ Ch‖w′′‖L2‖u− uh‖E ≤ Ch‖u− uh‖L2‖u− uh‖E.

Dividing by ‖u− uh‖L2 gives the result. �

Combining results, we get

Theorem 34. ‖u− uh‖L2 ≤ Ch2‖u′′‖L2.

To get better approximations, we use higher order piecewise polynomials. One can show
that if uI is a continuous piecewise polynomial of degree ≤ k interpolating u at the mesh
points x0, · · · , xn and at k − 1 distinct points in the interior of each subinterval (xi−1, xi),
i = 1, . . . , n, e.g.,

uI(xi) = u(xi), i = 0, 1, . . . , n,

uI(xi−1+j/k) = u(xi−1+j/k), j = 1, 2, . . . , k − 1, i = 1, . . . , n,

then for some constant C independent of h and u,

‖u− uI‖L2(a,b) ≤ Chk+1‖u(k+1)‖L2(a,b), ‖u′ − u′

I‖L2(a,b) ≤ Chk‖u(k+1)‖L2(a,b).

This result easily leads to the error estimates

‖u− uh‖E ≤ Chk‖u(k+1)‖L2(a,b), ‖u− uh‖L2 ≤ Chk+1‖u(k+1)‖L2(a,b).

10.3.7. Other boundary conditions. We now consider how to solve the same equation, but
with a different type of boundary condition, i.e., we replace the boundary condition u(b) = gb
by the boundary condition p(b)u′(b) = gb. We could also do a similar replacement at the left
end point, but it is more instructive to keep the boundary condition u(a) = ga to illustrate
the difference in the way different types of boundary conditions are handled by the finite
element method.

We begin from the integration by parts formula:

(Lu, v) =

∫ b

a

[

− d

dx

(

p(x)
du

dx

)

+ q(x)u

]

v dx = −pu′v|ba +
∫ b

a

(p(x)u′v′ + quv] dx.

Then,

a(u, v) ≡
∫ b

a

(p(x)u′v′ + quv] dx = (Lu, v) + pu′v|ba.

Now if u is a solution of our new boundary value problem, Lu = f and p(b)u′(b) = gb. Hence,
for all sufficiently smooth v satisfying v(a) = 0,

(10.2) a(u, v) = (f, v) + gbv(b).

Note we no longer take v(b) = 0 since if u is the solution of the boundary value problem, we
can evaluate the term p(b)u′(b)v(b) for any v, namely it is equal to gbv(b).
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We now reverse this process. If u satisfies (10.2) for all (sufficiently smooth) functions
satisfying v(a) = 0, then integrating by parts, we see that

(Lu, v) + p(b)u′(b)v(b) = (f, v) + gbv(b).

By first considering choices of v for which v(b) = 0, we can conclude that Lu = f , a < x < b.
Then by choosing v(b) = 1, we conclude that p(b)u′(b) = gb. So, in this case, we recover
both the differential equation and one of the boundary conditions. To get u to satisfy the
boundary condition u(a) = ga, we must impose it directly.

So we see that if the boundary condition for u in the integration by parts formula is known,
(i.e., is one of the boundary conditions in the boundary value problem), then we do not have
to impose any condition on the function v and do not have to build that boundary condition
into the space in which we look for the solution u, while if the boundary condition for u in
the integration by parts formula is not one of the boundary conditions in the boundary value
problem, we take v = 0 at that point and build that boundary condition into the space in
which we look for the solution u.

For example, to define a variational problem corresponding to the boundary value problem
we are now considering, we define the spaces

W 0 = {v ∈ V : v(a) = 0}, W g = {v ∈ V : v(a) = ga}.
Then our new variational formulation is:

Problem Q: Find u ∈ W g such that a(u, v) = (f, v) + gbv(b) for all v ∈ W 0.

The approximate problem is then defined in a similar way. We first define

W 0
h = {v ∈ Vh : v(a) = 0}, W g

h = {v ∈ Vh : v(a) = ga}.
Then the approximate problem is:

Problem Qh: Find uh ∈ W g
h such that a(uh, v) = (f, v) + gbv(b) for all v ∈ W 0

h .

The analysis is the same as for the previous problem. The linear system we have to solve
will involve one additional unknown, uh(b).


